CCPortal
DOI10.1029/2019JD030967
Direct Radiative Effect of Absorbing Aerosols: Sensitivity to Mixing State, Brown Carbon, and Soil Dust Refractive Index and Shape
Tuccella P.; Curci G.; Pitari G.; Lee S.; Jo D.S.
发表日期2020
ISSN2169897X
卷号125期号:2
英文摘要Black carbon (BC), brown carbon (BrC), and soil dust are the most relevant radiation-absorbing aerosols in the climate system, and uncertainties of their absorbing optical properties are large. We performed a 5-year simulation with the GEOS-Chem global chemistry and transport model and calculated the aerosol optical properties testing different mixing state assumptions and absorption properties of BC and BrC, refractive index, and shape of soil dust. We found that the core-shell (CS) internal mixing representation produces the most accurate absorption aerosol optical depth and single-scattering albedo at Aerosol Robotic Network (AERONET) Sun photometers site observations dominated by carbonaceous absorption. Dust absorption is sensitive to the assumed refractive index. The nonspherical shape of dust improves the simulation at sites dominated by dust absorption. Global mean of all-sky direct radiative effect (DRE) by BC is +0.13 and +0.25 W/m2 for external and CS mixing state assumptions, respectively. Adding BrC in CS mixing state, the BC-BrC DRE mixture increases to +0.40 W/m2, indicating an absorption enhancement with respect to external mixing state of +0.27 W/m2, which is less than the +0.51 W/m2 previously reported. The difference is attributed to the inclusion of the blanching process of BrC from biomass burning. Dust DREs are −0.10, +0.11, and +0.22 W/m2 for “low,” “middle,” and “high” dust absorption scenarios, respectively. Considering the nonspherical shape, these values change by up to 0.03 W/m2. All-sky DRE by all radiation-absorbing aerosols is +0.46 W/m2. Aerosol mixing state, BrC treatment, and dust optical property uncertainties suggest a total DRE uncertainty of −57%/+59%. ©2020. American Geophysical Union. All Rights Reserved.
英文关键词black carbon; brown carbon; direct radiative effect; mixing state; radiation-absorbing aerosols; soil dust
语种英语
来源期刊Journal of Geophysical Research: Atmospheres
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/186209
作者单位Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy; Center of Excellence in Telesensing of Environment and Model Prediction of Severe Events, University of L'Aquila, L'Aquila, Italy; School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States; Department of Chemistry, University of Colorado Boulder, Boulder, CO, United States
推荐引用方式
GB/T 7714
Tuccella P.,Curci G.,Pitari G.,et al. Direct Radiative Effect of Absorbing Aerosols: Sensitivity to Mixing State, Brown Carbon, and Soil Dust Refractive Index and Shape[J],2020,125(2).
APA Tuccella P.,Curci G.,Pitari G.,Lee S.,&Jo D.S..(2020).Direct Radiative Effect of Absorbing Aerosols: Sensitivity to Mixing State, Brown Carbon, and Soil Dust Refractive Index and Shape.Journal of Geophysical Research: Atmospheres,125(2).
MLA Tuccella P.,et al."Direct Radiative Effect of Absorbing Aerosols: Sensitivity to Mixing State, Brown Carbon, and Soil Dust Refractive Index and Shape".Journal of Geophysical Research: Atmospheres 125.2(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tuccella P.]的文章
[Curci G.]的文章
[Pitari G.]的文章
百度学术
百度学术中相似的文章
[Tuccella P.]的文章
[Curci G.]的文章
[Pitari G.]的文章
必应学术
必应学术中相似的文章
[Tuccella P.]的文章
[Curci G.]的文章
[Pitari G.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。