Climate Change Data Portal
DOI | 10.1029/2019JD031708 |
Ambient Aerosol Hygroscopic Growth From Combined Raman Lidar and HSRL | |
Dawson K.W.; Ferrare R.A.; Moore R.H.; Clayton M.B.; Thorsen T.J.; Eloranta E.W. | |
发表日期 | 2020 |
ISSN | 2169897X |
卷号 | 125期号:7 |
英文摘要 | Lidar retrievals of aerosol extinction and collocated relative humidity (RH) were acquired during the Department of Energy Combined High Spectral Resolution Lidar (HSRL) and Raman Measurement Study campaign in the summer of 2015 at the Southern Great Plains site in northern Oklahoma. Measurements of the hygroscopic properties of aerosols are crucial for accurately representing their relationship with clouds, which can be a significant source of uncertainty in assessing direct and indirect radiative effects. The ability for lidar to retrieve measurements of the vertically resolved f (RH), that is, the aerosol extinction at some wet RH normalized by the aerosol extinction at a dry reference RH, is investigated here and compared with nephelometer-measured f (RH) at the surface. We introduce a modified approach to fitting the lidar measurements of aerosol extinction and our comparisons reveal that lidar and nephelometer measurements of f (RH) are consistent, both with each other and with reported values in the literature. The implications for this work present a path forward for global-scale retrievals of remotely sensed aerosol hygroscopic properties. Most importantly, the efforts in this study could lead to closing the gap on uncertainties associated with the aerosol indirect radiative effect when combined with inversion retrievals of aerosol microphysical properties. ©2020. The Authors. |
英文关键词 | Aerosol humidification factor; CHARMS; f(RH); HSRL; hygroscopicity; Raman lidar |
语种 | 英语 |
来源期刊 | Journal of Geophysical Research: Atmospheres
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/186067 |
作者单位 | Universities Space Research Association, Columbia, MD, United States; NASA Langley Research Center, Hampton, VA, United States; Science Systems and Applications, Inc., Hampton, VA, United States; Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, United States |
推荐引用方式 GB/T 7714 | Dawson K.W.,Ferrare R.A.,Moore R.H.,et al. Ambient Aerosol Hygroscopic Growth From Combined Raman Lidar and HSRL[J],2020,125(7). |
APA | Dawson K.W.,Ferrare R.A.,Moore R.H.,Clayton M.B.,Thorsen T.J.,&Eloranta E.W..(2020).Ambient Aerosol Hygroscopic Growth From Combined Raman Lidar and HSRL.Journal of Geophysical Research: Atmospheres,125(7). |
MLA | Dawson K.W.,et al."Ambient Aerosol Hygroscopic Growth From Combined Raman Lidar and HSRL".Journal of Geophysical Research: Atmospheres 125.7(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。