Climate Change Data Portal
DOI | 10.1029/2020JD033421 |
Sensitivity of Atmospheric River Vapor Transport and Precipitation to Uniform Sea Surface Temperature Increases | |
McClenny E.E.; Ullrich P.A.; Grotjahn R. | |
发表日期 | 2020 |
ISSN | 2169897X |
卷号 | 125期号:21 |
英文摘要 | Filaments of intense vapor transport called atmospheric rivers (ARs) are responsible for the majority of poleward vapor transport in the midlatitudes. Despite their importance to the hydrologic cycle, there remain many unanswered questions about changes to ARs in a warming climate. In this study we perform a series of escalating uniform SST increases (+2, +4, and +6K, respectively) in the Community Atmosphere Model version 5 in an aquaplanet configuration to evaluate the thermodynamic and dynamical response of AR vapor content, transport, and precipitation to warming SSTs. We find that AR column integrated water vapor (IWV) is especially sensitive to SST and increases by 6.3–9.7% per degree warming despite decreasing relative humidity through much of the column. Further analysis provides a more nuanced view of AR IWV changes: Since SST warming is modest compared to that in the midtroposphere, computing fractional changes in IWV with respect to SST results in finding spuriously large increases. Meanwhile, results here show that AR IWV transport increases relatively uniformly with temperature and at consistently lower rates than IWV, as modulated by systematically decreasing low-level wind speeds. Similarly, changes in AR precipitation are related to a compensatory relationship between enhanced near-surface moisture and damped vertical motions. © 2020. American Geophysical Union. All Rights Reserved. |
英文关键词 | aquaplanet; atmospheric rivers; attribution; CC scaling; sensitivity |
语种 | 英语 |
来源期刊 | Journal of Geophysical Research: Atmospheres
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/185669 |
作者单位 | Atmospheric Science, University of California, Davis, Davis, CA, United States |
推荐引用方式 GB/T 7714 | McClenny E.E.,Ullrich P.A.,Grotjahn R.. Sensitivity of Atmospheric River Vapor Transport and Precipitation to Uniform Sea Surface Temperature Increases[J],2020,125(21). |
APA | McClenny E.E.,Ullrich P.A.,&Grotjahn R..(2020).Sensitivity of Atmospheric River Vapor Transport and Precipitation to Uniform Sea Surface Temperature Increases.Journal of Geophysical Research: Atmospheres,125(21). |
MLA | McClenny E.E.,et al."Sensitivity of Atmospheric River Vapor Transport and Precipitation to Uniform Sea Surface Temperature Increases".Journal of Geophysical Research: Atmospheres 125.21(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。