Climate Change Data Portal
DOI | 10.1007/s10533-021-00801-y |
Differential subsurface mobilization of ambient mercury and isotopically enriched mercury tracers in a harvested and residue harvested hardwood forest in northern Minnesota | |
McCarter C.P.R.; Sebestyen S.D.; Eggert S.L.; Kolka R.K.; Mitchell C.P.J. | |
发表日期 | 2021 |
ISSN | 1682563 |
起始页码 | 119 |
结束页码 | 138 |
卷号 | 154期号:1 |
英文摘要 | Mercury is a global pollutant of critical concern but its movement through terrestrial upland systems is poorly understood. We investigated whether forest harvesting practices and varying hydrological conditions resulted in different subsurface transport pathways, fluxes and proportions of recent vs. ambient mercury in runoff. In a multiyear field experiment, we measured subsurface lateral mercury fluxes at three adjacent hillslope plots, including one that was not harvested, one where all biomass was removed after harvest, and one where residual biomass was left after harvest. Two different enriched stable mercury isotopes (Hg tracer) were added to the hillslope plots (one pre-harvest and one post-harvest) to help differentiate between recently deposited mercury and ambient mercury in soils, as well as to identify changes between years. More Hg tracer was recovered in runoff post-harvest (16.2–54.0 μg) than pre-harvest (3.7–11.8 μg) from both harvested hillslopes, but differences between harvested hillslopes were not significant. The movement of Hg tracer was governed by periods of near surface preferential flow that was enhanced by forest harvesting. Runoff Hg tracer concentrations were significantly and inversely related to both event runoff magnitude (R2 = 0.85) and runoff ratio (R2 = 0.81). Insignificant relationships between Hg tracer concentrations and both DOC and precipitation pH suggest that for recently deposited mercury, the overarching controls on mobilization were hydrological rather than biogeochemical. The dependence of mercury mobilization on the routing of precipitation to different subsurface flow pathways suggests an important interaction between climate and the age of mercury pools for mercury transport from terrestrial landscapes. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
英文关键词 | Biomass harvest; Dissolved organic carbon; Mercury; Silviculture; Soil; Throughflow |
语种 | 英语 |
来源期刊 | Biogeochemistry
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/184597 |
作者单位 | Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada; USDA Forest Service Northern Research Station, Grand Rapids, MN 55744, United States |
推荐引用方式 GB/T 7714 | McCarter C.P.R.,Sebestyen S.D.,Eggert S.L.,et al. Differential subsurface mobilization of ambient mercury and isotopically enriched mercury tracers in a harvested and residue harvested hardwood forest in northern Minnesota[J],2021,154(1). |
APA | McCarter C.P.R.,Sebestyen S.D.,Eggert S.L.,Kolka R.K.,&Mitchell C.P.J..(2021).Differential subsurface mobilization of ambient mercury and isotopically enriched mercury tracers in a harvested and residue harvested hardwood forest in northern Minnesota.Biogeochemistry,154(1). |
MLA | McCarter C.P.R.,et al."Differential subsurface mobilization of ambient mercury and isotopically enriched mercury tracers in a harvested and residue harvested hardwood forest in northern Minnesota".Biogeochemistry 154.1(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。