CCPortal
DOI10.5194/cp-17-565-2021
Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: Confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact
Abbott P.M.; Plunkett G.; Corona C.; Chellman N.J.; McConnell J.R.; Pilcher J.R.; Stoffel M.; Sigl M.
发表日期2021
ISSN1814-9324
起始页码523
结束页码541
卷号17期号:2
英文摘要Volcanic eruptions are a key source of climatic variability, and reconstructing their past impact can improve our understanding of the operation of the climate system and increase the accuracy of future climate projections. Two annually resolved and independently dated palaeoarchives-tree rings and polar ice cores-can be used in tandem to assess the timing, strength and climatic impact of volcanic eruptions over the past span classCombining double low line inline-formula g1/4/span 2500 years. The quantification of post-volcanic climate responses, however, has at times been hampered by differences between simulated and observed temperature responses that raised questions regarding the robustness of the chronologies of both archives. While many chronological mismatches have been resolved, the precise timing and climatic impact of two major sulfate-emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulfate-loading event in the last 700 years, have not been constrained. Here we explore this issue through a combination of tephrochronological evidence and high-resolution ice-core chemistry measurements from a Greenland ice core, the TUNU2013 record. We identify tephra from the historically dated 1477 CE eruption of the Icelandic Veiðivötn-Bárðarbunga volcanic system in direct association with a notable sulfate peak in TUNU2013 attributed to this event, confirming that this peak can be used as a reliable and precise time marker. Using seasonal cycles in several chemical elements and 1477 CE as a fixed chronological point shows that ages of 1453 CE and 1458 CE can be attributed, with high precision, to the start of two other notable sulfate peaks. This confirms the accuracy of a recent Greenland ice-core chronology over the middle to late 15th century and corroborates the findings of recent volcanic reconstructions from Greenland and Antarctica. Overall, this implies that large-scale Northern Hemisphere climatic cooling affecting tree-ring growth in 1453 CE was caused by a Northern Hemisphere volcanic eruption in 1452 or early 1453 CE, and then a Southern Hemisphere eruption, previously assumed to have triggered the cooling, occurred later in 1457 or 1458 CE. span idCombining double low line page566 The direct attribution of the 1477 CE sulfate peak to the eruption of Veiðivötn, one of the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess the eruption's climatic impact. A tree-ring-based reconstruction of Northern Hemisphere summer temperatures shows a cooling in the aftermath of the eruption of span classCombining double low line inline-formula 0.35 span classCombining double low line inline-formula g /spanC relative to a 1961-1990 CE reference period and span classCombining double low line inline-formula 0.1 span classCombining double low line inline-formula g /spanC relative to the 30-year period around the event, as well as a relatively weak and spatially incoherent climatic response in comparison to the less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki 1783 CE eruptions. In addition, the Veiðivötn 1477 CE eruption occurred around the inception of the Little Ice Age and could be used as a chronostratigraphic marker to constrain the phasing and spatial variability of climate changes over this transition if it can be traced in more regional palaeoclimatic archives. © 2021 Copernicus GmbH. All rights reserved.
来源期刊Climate of the Past
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/183596
作者单位Climate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, Bern, 3012, Switzerland; Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom; Geolab, Université Clermont Auvergne, CNRS, Clermont-Ferrand, 63000, France; Desert Research Institute, Nevada System of Higher Education, Reno, NV 89512, United States; Climatic Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, 1205, Switzerland; Department of Earth Sciences, University of Geneva, Geneva, 1205, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Geneva, 1205, Switzerland
推荐引用方式
GB/T 7714
Abbott P.M.,Plunkett G.,Corona C.,et al. Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: Confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact[J],2021,17(2).
APA Abbott P.M..,Plunkett G..,Corona C..,Chellman N.J..,McConnell J.R..,...&Sigl M..(2021).Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: Confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact.Climate of the Past,17(2).
MLA Abbott P.M.,et al."Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: Confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact".Climate of the Past 17.2(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abbott P.M.]的文章
[Plunkett G.]的文章
[Corona C.]的文章
百度学术
百度学术中相似的文章
[Abbott P.M.]的文章
[Plunkett G.]的文章
[Corona C.]的文章
必应学术
必应学术中相似的文章
[Abbott P.M.]的文章
[Plunkett G.]的文章
[Corona C.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。