CCPortal
DOI10.1007/s00382-021-05638-7
Quantifying the influence of natural climate variability on in situ measurements of seasonal total and extreme daily precipitation
Risser M.D.; Wehner M.F.; O’Brien J.P.; Patricola C.M.; O’Brien T.A.; Collins W.D.; Paciorek C.J.; Huang H.
发表日期2021
ISSN0930-7575
起始页码855
结束页码871
卷号56期号:2021-09-10
英文摘要While various studies explore the relationship between individual sources of climate variability and extreme precipitation, there is a need for improved understanding of how these physical phenomena simultaneously influence precipitation in the observational record across the contiguous United States. In this work, we introduce a single framework for characterizing the historical signal (anthropogenic forcing) and noise (natural variability) in seasonal mean and extreme precipitation. An important aspect of our analysis is that we simultaneously isolate the individual effects of seven modes of variability while explicitly controlling for joint inter-mode relationships. Our method utilizes a spatial statistical component that uses in situ measurements to resolve relationships to their native scales; furthermore, we use a data-driven procedure to robustly determine statistical significance. In Part I of this work we focus on natural climate variability: detection is mostly limited to DJF and SON for the modes of variability considered, with the El Niño/Southern Oscillation, the Pacific–North American pattern, and the North Atlantic Oscillation exhibiting the largest influence. Across all climate indices considered, the signals are larger and can be detected more clearly for seasonal total versus extreme precipitation. We are able to detect at least some significant relationships in all seasons in spite of extremely large (> 95%) background variability in both mean and extreme precipitation. Furthermore, we specifically quantify how the spatial aspect of our analysis reduces uncertainty and increases detection of statistical significance while also discovering results that quantify the complex interconnected relationships between climate drivers and seasonal precipitation. © 2021, The Author(s).
英文关键词El Niño/Southern Oscillation; Extreme value analysis; Natural variability; North Atlantic Oscillation; Pacific–North American pattern; Spatial statistics; Station data
来源期刊Climate Dynamics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/183283
作者单位Lawrence Berkeley National Laboratory, Berkeley, CA, United States; National Center for Atmospheric Research, Boulder, CO, United States; Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States; Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, United States; Department of Statistics, University of California, Berkeley, CA, United States
推荐引用方式
GB/T 7714
Risser M.D.,Wehner M.F.,O’Brien J.P.,et al. Quantifying the influence of natural climate variability on in situ measurements of seasonal total and extreme daily precipitation[J],2021,56(2021-09-10).
APA Risser M.D..,Wehner M.F..,O’Brien J.P..,Patricola C.M..,O’Brien T.A..,...&Huang H..(2021).Quantifying the influence of natural climate variability on in situ measurements of seasonal total and extreme daily precipitation.Climate Dynamics,56(2021-09-10).
MLA Risser M.D.,et al."Quantifying the influence of natural climate variability on in situ measurements of seasonal total and extreme daily precipitation".Climate Dynamics 56.2021-09-10(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Risser M.D.]的文章
[Wehner M.F.]的文章
[O’Brien J.P.]的文章
百度学术
百度学术中相似的文章
[Risser M.D.]的文章
[Wehner M.F.]的文章
[O’Brien J.P.]的文章
必应学术
必应学术中相似的文章
[Risser M.D.]的文章
[Wehner M.F.]的文章
[O’Brien J.P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。