CCPortal
DOI10.1073/pnas.2016900118
Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer
MacLachlan I.R.; McDonald T.K.; Lind B.M.; Rieseberg L.H.; Yeaman S.; Aitken S.N.
发表日期2021
ISSN00278424
卷号118期号:10
英文摘要Locally adapted temperate tree populations exhibit genetic tradeoffs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits. © 2021 National Academy of Sciences. All rights reserved.
英文关键词Climatic adaptation; Lodgepole pine; Polygenic traits; Positive effect alleles; Selective breeding
语种英语
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/180392
作者单位Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, United States; Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
推荐引用方式
GB/T 7714
MacLachlan I.R.,McDonald T.K.,Lind B.M.,et al. Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer[J],2021,118(10).
APA MacLachlan I.R.,McDonald T.K.,Lind B.M.,Rieseberg L.H.,Yeaman S.,&Aitken S.N..(2021).Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer.Proceedings of the National Academy of Sciences of the United States of America,118(10).
MLA MacLachlan I.R.,et al."Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer".Proceedings of the National Academy of Sciences of the United States of America 118.10(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[MacLachlan I.R.]的文章
[McDonald T.K.]的文章
[Lind B.M.]的文章
百度学术
百度学术中相似的文章
[MacLachlan I.R.]的文章
[McDonald T.K.]的文章
[Lind B.M.]的文章
必应学术
必应学术中相似的文章
[MacLachlan I.R.]的文章
[McDonald T.K.]的文章
[Lind B.M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。