Climate Change Data Portal
DOI | 10.1073/pnas.2013374118 |
Cysteinyl-specialized proresolving mediators link resolution of infectious inflammation and tissue regeneration via TRAF3 activation | |
Chiang N.; De La Rosa X.; Libreros S.; Pan H.; Dreyfuss J.M.; Serhan C.N. | |
发表日期 | 2021 |
ISSN | 00278424 |
卷号 | 118期号:10 |
英文摘要 | The recently elucidated proresolving conjugates in tissue regeneration (CTR) maresin-CTR (MCTR), protectin-CTR (PCTR), and resolvin-CTR (RCTR), termed cysteinyl-specialized proresolving mediators (cys-SPMs) each promotes regeneration, controls infection, and accelerates resolution of inflammation. Here, we sought evidence for cys-SPM activation of primordial pathways in planaria (Dugesia japonica) regeneration that might link resolution of inflammation and regeneration. On surgical resection, planaria regeneration was enhanced with MCTR3, PCTR3, or RCTR3 (10 nM), each used for RNA sequencing. The three cys-SPMs shared up-regulation of 175 known transcripts with fold-change > 1.25 and combined false discovery rate (FDR) < 0.002, and 199 canonical pathways (FDR < 0.25), including NF-κB pathways and an ortholog of human TRAF3 (TNFR-associated factor 3). Three separate pathway analyses converged on TRAF3 up-regulation by cys-SPMs. With human macrophages, three cys-SPMs each dose-dependently increased TRAF3 expression in a cAMP-PKA–dependent manner. TRAF3 overexpression in macrophages enhanced Interleukin-10 (IL-10) and phagocytosis of Escherichia coli. IL-10 also increased phagocytosis in a dose-dependent manner. Silencing of mouse TRAF3 in vivo significantly reduced IL-10 and macrophage phagocytosis. TRAF3 silencing in vivo also relieved cys-SPMs’ actions in limiting polymorphonuclear neutrophil in E. coli exudates. These results identify cys-SPM–regulated pathways in planaria regeneration, uncovering a role for TRAF3/IL-10 in regulating mammalian phagocyte functions in resolution. Cys-SPM activation of TRAF3 signaling is a molecular component of both regeneration and resolution of infectious inflammation. © 2021 National Academy of Sciences. All rights reserved. |
语种 | 英语 |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/180352 |
作者单位 | Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States; Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, United States |
推荐引用方式 GB/T 7714 | Chiang N.,De La Rosa X.,Libreros S.,et al. Cysteinyl-specialized proresolving mediators link resolution of infectious inflammation and tissue regeneration via TRAF3 activation[J],2021,118(10). |
APA | Chiang N.,De La Rosa X.,Libreros S.,Pan H.,Dreyfuss J.M.,&Serhan C.N..(2021).Cysteinyl-specialized proresolving mediators link resolution of infectious inflammation and tissue regeneration via TRAF3 activation.Proceedings of the National Academy of Sciences of the United States of America,118(10). |
MLA | Chiang N.,et al."Cysteinyl-specialized proresolving mediators link resolution of infectious inflammation and tissue regeneration via TRAF3 activation".Proceedings of the National Academy of Sciences of the United States of America 118.10(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。