CCPortal
DOI10.1073/pnas.2101344118
Density estimation using deep generative neural networks
Liu Q.; Xu J.; Jiang R.; Wong W.H.
发表日期2021
ISSN00278424
卷号118期号:15
英文摘要Density estimation is one of the fundamental problems in both statistics and machine learning. In this study, we propose Roundtrip, a computational framework for general-purpose density estimation based on deep generative neural networks. Roundtrip retains the generative power of deep generative models, such as generative adversarial networks (GANs) while it also provides estimates of density values, thus supporting both data generation and density estimation. Unlike previous neural density estimators that put stringent conditions on the transformation from the latent space to the data space, Roundtrip enables the use of much more general mappings where target density is modeled by learning a manifold induced from a base density (e.g., Gaussian distribution). Roundtrip provides a statistical framework for GAN models where an explicit evaluation of density values is feasible. In numerical experiments, Roundtrip exceeds state-of-the-art performance in a diverse range of density estimation tasks. © This open access article is distributed under Creative Commons Attribution-NonCommercialNoDerivatives License 4.0 (CC BY-NC-ND).
英文关键词Deep learning; Density estimation; GAN; Importance sampling; Neural network
语种英语
scopus关键词article; artificial neural network; deep learning
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/179924
作者单位Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics, The Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China; Department of Statistics, Stanford University, Stanford, CA 94305, United States; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, United States; Bio-X Program, Stanford University, Stanford, CA 94305, United States; Center for Statistical Science, Tsinghua University, Beijing, 100084, China; Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China
推荐引用方式
GB/T 7714
Liu Q.,Xu J.,Jiang R.,et al. Density estimation using deep generative neural networks[J],2021,118(15).
APA Liu Q.,Xu J.,Jiang R.,&Wong W.H..(2021).Density estimation using deep generative neural networks.Proceedings of the National Academy of Sciences of the United States of America,118(15).
MLA Liu Q.,et al."Density estimation using deep generative neural networks".Proceedings of the National Academy of Sciences of the United States of America 118.15(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu Q.]的文章
[Xu J.]的文章
[Jiang R.]的文章
百度学术
百度学术中相似的文章
[Liu Q.]的文章
[Xu J.]的文章
[Jiang R.]的文章
必应学术
必应学术中相似的文章
[Liu Q.]的文章
[Xu J.]的文章
[Jiang R.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。