Climate Change Data Portal
DOI | 10.1073/PNAS.2013771117 |
Predicting long-term dynamics of soil salinity and sodicity on a global scale | |
Hassani A.; Azapagic A.; Shokri N. | |
发表日期 | 2021 |
ISSN | 00278424 |
起始页码 | 33017 |
结束页码 | 33027 |
卷号 | 117期号:52 |
英文摘要 | Knowledge of spatiotemporal distribution and likelihood of (re)occurrence of salt-affected soils is crucial to our understanding of land degradation and for planning effective remediation strategies in face of future climatic uncertainties. However, conventional methods used for tracking the variability of soil salinity/sodicity are extensively localized, making predictions on a global scale difficult. Here, we employ machine-learning techniques and a comprehensive set of climatic, topographic, soil, and remote sensing data to develop models capable of making predictions of soil salinity (expressed as electrical conductivity of saturated soil extract) and sodicity (measured as soil exchangeable sodium percentage) at different longitudes, latitudes, soil depths, and time periods. Using these predictive models, we provide a global-scale quantitative and gridded dataset characterizing different spatiotemporal facets of soil salinity and sodicity variability over the past four decades at a ∼1-km resolution. Analysis of this dataset reveals that a soil area of 11.73 Mkm2 located in nonfrigid zones has been salt-affected with a frequency of reoccurrence in at least three-fourths of the years between 1980 and 2018, with 0.16 Mkm2 of this area being croplands. Although the net changes in soil salinity/sodicity and the total area of salt-affected soils have been geographically highly variable, the continents with the highest salt-affected areas are Asia (particularly China, Kazakhstan, and Iran), Africa, and Australia. The proposed method can also be applied for quantifying the spatiotemporal variability of other dynamic soil properties, such as soil nutrients, organic carbon content, and pH. © 2020 National Academy of Sciences. All rights reserved. |
英文关键词 | Global scale modeling; Machine learning; Soil salinity; Soil salinization; Soil sodicity |
语种 | 英语 |
scopus关键词 | sodium; Africa; Article; Australia; China; climate; cropland; electric conductivity; Iran; Kazakhstan; machine learning; priority journal; quantitative analysis; remote sensing; salinity; soil depth; soil quality; soil salinity; soil sodicity; topography; validation process |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/179659 |
作者单位 | Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, M13 9PL, United Kingdom; Institute of Geo-Hydroinformatics, Hamburg University of Technology, Hamburg, 21073, Germany |
推荐引用方式 GB/T 7714 | Hassani A.,Azapagic A.,Shokri N.. Predicting long-term dynamics of soil salinity and sodicity on a global scale[J],2021,117(52). |
APA | Hassani A.,Azapagic A.,&Shokri N..(2021).Predicting long-term dynamics of soil salinity and sodicity on a global scale.Proceedings of the National Academy of Sciences of the United States of America,117(52). |
MLA | Hassani A.,et al."Predicting long-term dynamics of soil salinity and sodicity on a global scale".Proceedings of the National Academy of Sciences of the United States of America 117.52(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。