CCPortal
DOI10.1016/j.rse.2019.111536
Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series
Fauvel M.; Lopes M.; Dubo T.; Rivers-Moore J.; Frison P.-L.; Gross N.; Ouin A.
发表日期2020
ISSN00344257
卷号237
英文摘要The prediction of grasslands plant diversity using satellite image time series is considered in this article. Fifteen months of freely available Sentinel optical and radar data were used to predict taxonomic and functional diversity at the pixel scale (10 m × 10 m) over a large geographical extent (40,000 km2). 415 field measurements were collected in 83 grasslands to train and validate several statistical learning methods. The objective was to link the satellite spectro-temporal data to the plant diversity indices. Among the several diversity indices tested, Simpson and Shannon indices were best predicted with a coefficient of determination around 0.4 using a Random Forest predictor and Sentinel-2 data. The use of Sentinel-1 data was not found to improve significantly the prediction accuracy. Using the Random Forest algorithm and the Sentinel-2 time series, the prediction of the Simpson index was performed. The resulting map highlights the intra-parcel variability and demonstrates the capacity of satellite image time series to monitor grasslands plant taxonomic diversity from an ecological viewpoint. © 2019 Elsevier Inc.
英文关键词Grasslands; Satellite image time series; Sentinel-1 & -2; Statistical learning; taxonomic diversity
语种英语
scopus关键词Decision trees; Learning systems; Satellites; Time series; Grasslands; Satellite images; Sentinel-1; Statistical learning; Taxonomic diversity; Forecasting; algorithm; field margin; field method; grassland; plant; satellite data; satellite imagery; Sentinel; species diversity; taxonomy; time series analysis
来源期刊Remote Sensing of Environment
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/179540
作者单位CESBIO, Université de Toulouse, CNES/CNRS/INRA/IRD/UPS, Toulouse, France; DYNAFOR, Université de Toulouse, INRA, Castanet-Tolosan, France; UCA, INRA, VetAgro Sup, UMR 0874 Ecosystème Prairial, Clermont-Ferrand, 63000, France; LaSTIG, Université Paris-Est, IGN, 5 Bd Descartes, Champs sur Marne, Marne la Vallée, 77455, France
推荐引用方式
GB/T 7714
Fauvel M.,Lopes M.,Dubo T.,et al. Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series[J],2020,237.
APA Fauvel M..,Lopes M..,Dubo T..,Rivers-Moore J..,Frison P.-L..,...&Ouin A..(2020).Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series.Remote Sensing of Environment,237.
MLA Fauvel M.,et al."Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series".Remote Sensing of Environment 237(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fauvel M.]的文章
[Lopes M.]的文章
[Dubo T.]的文章
百度学术
百度学术中相似的文章
[Fauvel M.]的文章
[Lopes M.]的文章
[Dubo T.]的文章
必应学术
必应学术中相似的文章
[Fauvel M.]的文章
[Lopes M.]的文章
[Dubo T.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。