CCPortal
DOI10.1016/j.rse.2020.112234
Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping
Silva C.A.; Duncanson L.; Hancock S.; Neuenschwander A.; Thomas N.; Hofton M.; Fatoyinbo L.; Simard M.; Marshak C.Z.; Armston J.; Lutchke S.; Dubayah R.
发表日期2021
ISSN00344257
卷号253
英文摘要Accurate mapping of forest aboveground biomass (AGB) is critical for better understanding the role of forests in the global carbon cycle. NASA's current GEDI and ICESat-2 missions as well as the upcoming NISAR mission will collect synergistic data with different coverage and sensitivity to AGB. In this study, we present a multi-sensor data fusion approach leveraging the strength of each mission to produce wall-to-wall AGB maps that are more accurate and spatially comprehensive than what is achievable with any one sensor alone. Specifically, we calibrate a regional L-band radar AGB model using the sparse, simulated spaceborne lidar AGB estimates. We assess our data fusion framework using simulations of GEDI, ICESat-2 and NISAR data from airborne laser scanning (ALS) and UAVSAR data acquired over the temperate high AGB forest and complex terrain in Sonoma County, California, USA. For ICESat-2 and GEDI missions, we simulate two years of data coverage and AGB at footprint level are estimated using realistic AGB models. We compare the performance of our fusion framework when different combinations of the sparse simulated GEDI and ICEsat-2 AGB estimates are used to calibrate our regional L-band AGB models. In addition, we test our framework at Sonoma using (a) 1-ha square grid cells and (b) similarly sized irregularly shaped objects. We demonstrate that the estimated mean AGB across Sonoma is more accurately estimated using our fusion framework than using GEDI or ICESat-2 mission data alone, either with a regular grid or with irregular segments as mapping units. This research highlights methodological opportunities for fusing new and upcoming active remote sensing data streams toward improved AGB mapping through data fusion. © 2020 The Author(s)
英文关键词Biomass; Fusion; L-band SAR; Lidar; Mapping; Temperate forest
语种英语
scopus关键词Data streams; Forestry; Mapping; NASA; Optical radar; Remote sensing; Aboveground biomass; Airborne Laser scanning; California , USA; Complex terrains; Global carbon cycle; Multisensor data fusion; Remote sensing data; Space-borne lidar; Sensor data fusion; aboveground biomass; complex terrain; ecological footprint; ICESat; laser method; lidar; remote sensing; satellite altimetry; satellite sensor; synthetic aperture radar; California; Sonoma County; United States
来源期刊Remote Sensing of Environment
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/179008
作者单位Department of Geographical Sciences, University of Maryland, College Park, MD 20740, United States; School of Forest Resources and Conservation, University of Florida, Gainesville, FL 3261, United States; Biosciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20707, United States; School of GeoSciences, University of Edinburgh, Ireland; Applied Research Laboratories, University of Texas at Austin, Austin, TX 78712, United States; Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, United States; NASA-Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States
推荐引用方式
GB/T 7714
Silva C.A.,Duncanson L.,Hancock S.,et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping[J],2021,253.
APA Silva C.A..,Duncanson L..,Hancock S..,Neuenschwander A..,Thomas N..,...&Dubayah R..(2021).Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping.Remote Sensing of Environment,253.
MLA Silva C.A.,et al."Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping".Remote Sensing of Environment 253(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Silva C.A.]的文章
[Duncanson L.]的文章
[Hancock S.]的文章
百度学术
百度学术中相似的文章
[Silva C.A.]的文章
[Duncanson L.]的文章
[Hancock S.]的文章
必应学术
必应学术中相似的文章
[Silva C.A.]的文章
[Duncanson L.]的文章
[Hancock S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。