Climate Change Data Portal
DOI | 10.1016/j.rse.2021.112454 |
Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network | |
Li X.; Yang D.; Yang J.; Zheng G.; Han G.; Nan Y.; Li W. | |
发表日期 | 2021 |
ISSN | 00344257 |
卷号 | 260 |
英文摘要 | This paper demonstrates the capability and performance of sea surface wind speed retrieval in coastal regions (within 200 km away from the coastline) using spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) data from NASA's Cyclone GNSS (CYGNSS) mission. The wind speed retrieval is based on the Artificial Neural Network (ANN). A feedforward neural network is trained with the collocated CYGNSS Level 1B (version 2.1) observables and the wind speed from European Centre for Medium-range Weather Forecast Reanalysis 5th Generation (ECMWF ERA5) data in coastal regions. An ANN model with five hidden layers and 200 neurons in each layer has been constructed and applied to the validation set for wind speed retrieval. The proposed ANN model achieves good wind speed retrieval performance in coastal regions with a bias of −0.03 m/s and a RMSE of 1.58 m/s, corresponding to an improvement of 24.4% compared to the CYGNSS Level 2 (version 2.1) wind speed product. The ANN based retrievals are also compared to the ground truth measurements from the National Data Buoy Center (NDBC) buoys, which shows a bias of −0.44 m/s and a RMSE of 1.86 m/s. Moreover, the sensitivities of the wind speed retrieval performance to different input parameters have been analyzed. Among others, the geolocation of the specular point and the swell height can provide significant contribution to the wind speed retrieval, which can provide useful reference for more generic GNSS-R wind speed retrieval algorithms in coastal regions. © 2021 Elsevier Inc. |
英文关键词 | Artificial neural network (ANN); Coastal; Cyclone GNSS (CYGNSS); Global navigation satellite system reflectometry (GNSS-R); Sea surface wind speed |
语种 | 英语 |
scopus关键词 | Coastal zones; Communication satellites; Feedforward neural networks; NASA; Reflection; Reflectometers; Salinity measurement; Speed; Storms; Surface waters; Weather forecasting; Wind; Artificial neural network; Coastal; Coastal regions; Cyclone GNSS; Global navigation satellite system reflectometry; Global Navigation Satellite Systems; Neural-networks; Reflectometry; Sea-surface wind speed; Wind speeds retrieval; Global positioning system |
来源期刊 | Remote Sensing of Environment
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/178843 |
作者单位 | School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China; Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, BC V8L 4B2, Canada; GNSS Research Center, Wuhan University, Wuhan, 430079, China; Institute of Space Sciences (ICE, CSIC), Barcelona, 08193, Spain; Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, 08034, Spain |
推荐引用方式 GB/T 7714 | Li X.,Yang D.,Yang J.,et al. Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network[J],2021,260. |
APA | Li X..,Yang D..,Yang J..,Zheng G..,Han G..,...&Li W..(2021).Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network.Remote Sensing of Environment,260. |
MLA | Li X.,et al."Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network".Remote Sensing of Environment 260(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li X.]的文章 |
[Yang D.]的文章 |
[Yang J.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li X.]的文章 |
[Yang D.]的文章 |
[Yang J.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li X.]的文章 |
[Yang D.]的文章 |
[Yang J.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。