CCPortal
DOI10.5194/bg-17-3409-2020
Carbon dioxide and methane fluxes from different surface types in a created urban wetland
Li X.; Wahlroos O.; Haapanala S.; Pumpanen J.; Vasander H.; Ojala A.; Vesala T.; Mammarella I.
发表日期2020
ISSN17264170
起始页码3409
结束页码3425
卷号17期号:13
英文摘要Many wetlands have been drained due to urbanization, agriculture, forestry or other purposes, which has resulted in a loss of their ecosystem services. To protect receiving waters and to achieve services such as flood control and storm water quality mitigation, new wetlands are created in urbanized areas. However, our knowledge of greenhouse gas exchange in newly created wetlands in urban areas is currently limited. In this paper we present measurements carried out at a created urban wetland in Southern Finland in the boreal climate. We conducted measurements of ecosystem CO2 flux and CH4 flux (FCH4 ) at the created storm water wetland Gateway in Nummela, Vihti, Southern Finland, using the eddy covariance (EC) technique. The measurements were commenced the fourth year after construction and lasted for 1 full year and two subsequent growing seasons. Besides ecosystemscale fluxes measured by the EC tower, the diffusive CO2 and CH4 fluxes from the open-water areas (FwCO2 and FwCH4 , respectively) were modelled based on measurements of CO2 and CH4 concentration in the water. Fluxes from the vegetated areas were estimated by applying a simple mixing model using the above-mentioned fluxes and the footprintweighted fractional area. The half-hourly footprint-weighted contribution of diffusive fluxes from open water ranged from 0% to 25.5% in 2013. The annual net ecosystem exchange (NEE) of the studied wetland was 8.0 g C-CO2 m2 yr1, with the 95% confidence interval between 18:9 and 34.9 g C-CO2 m2 yr1, and FCH4 was 3.9 g C-CH4 m2 yr1, with the 95% confidence interval between 3.75 and 4.07 g C-CH4 m2 yr1. The ecosystem sequestered CO2 during summer months (June August), while the rest of the year it was a CO2 source. CH4 displayed strong seasonal dynamics, higher in summer and lower in winter, with a sporadic emission episode in the end of May 2013. Both CH4 and CO2 fluxes, especially those obtained from vegetated areas, exhibited strong diurnal cycles during summer with synchronized peaks around noon. The annual FwCO2 was 297.5 g C-CO2 m2 yr1 and FwCH4 was 1.73 g C-CH4 m2 yr1. The peak diffusive CH4 flux was 137.6 nmol C-CH4 m2 s1, which was synchronized with the FCH4 . Overall, during the monitored time period, the established storm water wetland had a climate-warming effect with 0.263 kgCO2-eqm2 yr1 of which 89% was contributed by CH4. The radiative forcing of the open-water areas exceeded that of the vegetation areas (1.194 and 0.111 kgCO2- eqm2 yr1, respectively), which implies that, when considering solely the climate impact of a created wetland over a 100-year horizon, it would be more beneficial to design and establish wetlands with large patches of emergent vegetation and to limit the areas of open water to the minimum necessitated by other desired ecosystem services. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
scopus关键词carbon dioxide; carbon flux; constructed wetland; ecosystem service; eddy covariance; greenhouse gas; growing season; methane; net ecosystem exchange; urban area; water quality; Finland
来源期刊Biogeosciences
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/176865
作者单位Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Helsinki, 00014, Finland; Palustrine Design Oy Poste Restante, Ingä, Finland; Suvilumi Oy Ohrahuhdantie 2 B, Helsinki, 00680, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland; Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland; Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Helsinki, 00014, Finland
推荐引用方式
GB/T 7714
Li X.,Wahlroos O.,Haapanala S.,et al. Carbon dioxide and methane fluxes from different surface types in a created urban wetland[J],2020,17(13).
APA Li X..,Wahlroos O..,Haapanala S..,Pumpanen J..,Vasander H..,...&Mammarella I..(2020).Carbon dioxide and methane fluxes from different surface types in a created urban wetland.Biogeosciences,17(13).
MLA Li X.,et al."Carbon dioxide and methane fluxes from different surface types in a created urban wetland".Biogeosciences 17.13(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li X.]的文章
[Wahlroos O.]的文章
[Haapanala S.]的文章
百度学术
百度学术中相似的文章
[Li X.]的文章
[Wahlroos O.]的文章
[Haapanala S.]的文章
必应学术
必应学术中相似的文章
[Li X.]的文章
[Wahlroos O.]的文章
[Haapanala S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。