CCPortal
DOI10.1109/ICORIS.2019.8874880
Application of PCA-SVM and ANN Techniques for Plastic Identification by Raman Spectroscopy
Musu W.; Tsuchida A.; Kawazumi H.; Oka N.
发表日期2019
起始页码114
结束页码118
英文摘要The mechanical recycling of plastics is one of the most efficient approaches for reducing carbon dioxide emissions. Purification of the plastics from shredded waste materials requires versatile techniques, such as optical identification by Raman spectroscopy. The identification procedure demands the spectroscopy expertise to assign molecular structures from spectral peaks. In this study, we demonstrate applications to classify plastics using machine learning techniques under practical recycling industry conditions. Combining the techniques of principal component analysis (PCA) and support vector machine provides an accurate and robust classification of the valuable plastics of polypropylene, polystyrene, and acrylonitrile-butadiene-styrene copolymer. The identification accuracy remained above 95%, even with noise 3 times larger than the original intensity. For noise 10 times larger, the accuracy was more than 70%. Fast and simple computation is also useful for industrial applications, resulting from dimension reduction of the spectroscopic data by PCA Furthermore, artificial neural networks showed high accuracy, close to 100%, after a few epoch calculations. IEEE.
英文关键词artificial neural networks; mechanical recycling; optical identification; principal component analysis; support vector machine
scopus关键词ABS resins; Carbon dioxide; Elastomers; Global warming; Intelligent systems; Neural networks; Plastic products; Plastic recycling; Plastics applications; Plastics industry; Polypropylenes; Polystyrenes; Raman spectroscopy; Spectrum analysis; Styrene; Support vector machines; Acrylonitrile-butadiene-styrene copolymers; Carbon dioxide emissions; Identification accuracy; Identification procedure; Machine learning techniques; Mechanical recycling; Optical identification; Robust classification; Principal component analysis
来源期刊2019 1st International Conference on Cybernetics and Intelligent System, ICORIS 2019
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/176376
作者单位Department of Biological and Environmental Chemistry, Kindai University, Iizuka, Japan; Saimu Corporation, Iizuka, Japan
推荐引用方式
GB/T 7714
Musu W.,Tsuchida A.,Kawazumi H.,et al. Application of PCA-SVM and ANN Techniques for Plastic Identification by Raman Spectroscopy[J],2019.
APA Musu W.,Tsuchida A.,Kawazumi H.,&Oka N..(2019).Application of PCA-SVM and ANN Techniques for Plastic Identification by Raman Spectroscopy.2019 1st International Conference on Cybernetics and Intelligent System, ICORIS 2019.
MLA Musu W.,et al."Application of PCA-SVM and ANN Techniques for Plastic Identification by Raman Spectroscopy".2019 1st International Conference on Cybernetics and Intelligent System, ICORIS 2019 (2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Musu W.]的文章
[Tsuchida A.]的文章
[Kawazumi H.]的文章
百度学术
百度学术中相似的文章
[Musu W.]的文章
[Tsuchida A.]的文章
[Kawazumi H.]的文章
必应学术
必应学术中相似的文章
[Musu W.]的文章
[Tsuchida A.]的文章
[Kawazumi H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。