Climate Change Data Portal
DOI | 10.3390/en12050949 |
Analyzing national and local pathways to carbon-neutrality from technology; emissions; and resilience perspectives—Case of Finland | |
Pilpola S.; Arabzadeh V.; Mikkola J.; Lund P.D. | |
发表日期 | 2019 |
ISSN | 19961073 |
卷号 | 12期号:5 |
英文摘要 | The Paris Climate Accord calls for urgent CO 2 reductions. Here we investigate low and zero carbon pathways based on clean electricity and sector coupling. Effects from different spatialities are considered through city and national cases (Helsinki and Finland). The methodology employs techno-economic energy system optimization, including resilience aspects. In the Finnish case, wind, nuclear, and biomass coupled to power-to-heat and other flexibility measures could provide a cost-effective carbon-neutral pathway (annual costs −18%), but nuclear and wind are, to some extent, exclusionary. A (near) carbon-neutral energy system seems possible even without nuclear (−94% CO 2 ). Zero-carbon energy production benefits from a stronger link to the broader electricity market albeit flexibility measures. On the city level, wind would not easily replace local combined heat and power (CHP), but may increase electricity export. In the Helsinki case, a business-as-usual approach could halve emissions and annual costs, while in a comprehensive zero-emission approach, the operating costs (OPEX) could decrease by 87%. Generally, electrification of heat production could be effective to reduce CO 2 . Low or zero carbon solutions have a positive impact on resilience, but in the heating sector this is more problematic, e.g., power outage and adequacy of supply during peak demand will require more attention when planning future carbon-free energy systems. by the authors. |
英文关键词 | Carbon neutrality; Energy system modelling; Photovoltaics; Renewable energy; Sector coupling; Urban energy; Wind power |
scopus关键词 | Carbon; Carbon dioxide; Cost effectiveness; Emission control; Free energy; Operating costs; Power generation; Wind power; Carbon neutralities; Energy system modelling; Photovoltaics; Renewable energies; Urban energy; Outages |
来源期刊 | Energies
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/176226 |
作者单位 | Aalto University, School of Science, New Energy Technologies Group, P.O. Box 15100, Aalto, Espoo, FI-00076, Finland |
推荐引用方式 GB/T 7714 | Pilpola S.,Arabzadeh V.,Mikkola J.,等. Analyzing national and local pathways to carbon-neutrality from technology; emissions; and resilience perspectives—Case of Finland[J],2019,12(5). |
APA | Pilpola S.,Arabzadeh V.,Mikkola J.,&Lund P.D..(2019).Analyzing national and local pathways to carbon-neutrality from technology; emissions; and resilience perspectives—Case of Finland.Energies,12(5). |
MLA | Pilpola S.,et al."Analyzing national and local pathways to carbon-neutrality from technology; emissions; and resilience perspectives—Case of Finland".Energies 12.5(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。