Climate Change Data Portal
DOI | 10.1175/JCLI-D-20-0049.1 |
The Dependence of Internal Multidecadal Variability in the Southern Ocean on the Ocean Background Mean State | |
Zhang L.; Delworth T.L.; Cooke W.; Goosse H.; Bushuk M.; Morioka Y.; Yang X. | |
发表日期 | 2021 |
ISSN | 0894-8755 |
起始页码 | 1061 |
结束页码 | 1080 |
卷号 | 34期号:3 |
英文摘要 | Previous studies have shown the existence of internal multidecadal variability in the Southern Ocean using multiple climate models. This variability, associated with deep ocean convection, can have significant climate impacts. In this work, we use sensitivity studies based on Geophysical Fluid Dynamics Laboratory (GFDL) models to investigate the linkage of this internal variability with the background ocean mean state. We find that mean ocean stratification in the subpolar region that is dominated by mean salinity influences whether this variability occurs, as well as its time scale. The weakening of background stratification favors the occurrence of deep convection. For background stratification states in which the low-frequency variability occurs, weaker ocean stratification corresponds to shorter periods of variability and vice versa. The amplitude of convection variability is largely determined by the amount of heat that can accumulate in the subsurface ocean during periods of the oscillation without deep convection. A larger accumulation of heat in the subsurface reservoir corresponds to a larger amplitude of variability. The subsurface heat buildup is a balance between advection that supplies heat to the reservoir and vertical mixing/convection that depletes it. Subsurface heat accumulation can be intensified both by an enhanced horizontal temperature advection by the Weddell Gyre and by an enhanced ocean stratification leading to reduced vertical mixing and surface heat loss. The paleoclimate records over Antarctica indicate that this multidecadal variability has very likely happened in past climates and that the period of this variability may shift with different climate background mean state. Ó 2021 American Meteorological Society. |
英文关键词 | Advection; Climate models; Mixing; Natural convection; American meteorological societies; Deep ocean convection; Geophysical fluid dynamics laboratories; Internal variability; Low frequency variability; Multidecadal variability; Ocean stratification; Paleoclimate records; Oceanography |
语种 | 英语 |
来源期刊 | Journal of Climate
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/170927 |
作者单位 | NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States; University Corporation for Atmospheric Research, Boulder, CO, United States; Earth and Life Institute, Université de Louvain, Louvain-la-Neuve, Belgium; Application Laboratory, VAiG, JAMSTEC, Yokohama, Japan |
推荐引用方式 GB/T 7714 | Zhang L.,Delworth T.L.,Cooke W.,et al. The Dependence of Internal Multidecadal Variability in the Southern Ocean on the Ocean Background Mean State[J],2021,34(3). |
APA | Zhang L..,Delworth T.L..,Cooke W..,Goosse H..,Bushuk M..,...&Yang X..(2021).The Dependence of Internal Multidecadal Variability in the Southern Ocean on the Ocean Background Mean State.Journal of Climate,34(3). |
MLA | Zhang L.,et al."The Dependence of Internal Multidecadal Variability in the Southern Ocean on the Ocean Background Mean State".Journal of Climate 34.3(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。