Climate Change Data Portal
DOI | 10.1029/2019GL085523 |
Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano | |
Ren C.X.; Peltier A.; Ferrazzini V.; Rouet-Leduc B.; Johnson P.A.; Brenguier F. | |
发表日期 | 2020 |
ISSN | 0094-8276 |
卷号 | 47期号:3 |
英文摘要 | Volcanic tremor is key to our understanding of active magmatic systems, but due to its complexity, there is still a debate concerning its origins and how it can be used to characterize eruptive dynamics. In this study we leverage machine learning techniques using 6 years of continuous seismic data from the Piton de la Fournaise volcano (La Réunion island) to describe specific patterns of seismic signals recorded during eruptions. These results unveil what we interpret as signals associated with various eruptive dynamics of the volcano, including the effusion of a large volume of lava during the August–October 2015 eruption as well as the closing of the eruptive vent during the September–November 2018 eruption. The machine learning workflow we describe can easily be applied to other active volcanoes, potentially leading to an enhanced understanding of the temporal and spatial evolution of volcanic eruptions. © 2020. The Authors. |
英文关键词 | Machine learning; Seismic waves; Seismology; Structural geology; Active volcanoes; Eruptive dynamics; Machine learning techniques; Magmatic systems; Piton de la Fournaise volcano; Seismic signatures; Temporal and spatial evolutions; Volcanic eruptions; Volcanoes; machine learning; seismic data; volcanic eruption; volcano; Piton de la Fournaise |
语种 | 英语 |
来源期刊 | Geophysical Research Letters
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/170796 |
作者单位 | Space Data Science and Systems Group, Los Alamos National Laboratory, Los Alamos, NM, United States; Geophysics Group, Los Alamos National Laboratory, Los Alamos, NM, United States; Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France; Observatoire volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris, La Plaine des Cafres, France; ISterre, Université Grenoble Alpes, Gières, France |
推荐引用方式 GB/T 7714 | Ren C.X.,Peltier A.,Ferrazzini V.,et al. Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano[J],2020,47(3). |
APA | Ren C.X.,Peltier A.,Ferrazzini V.,Rouet-Leduc B.,Johnson P.A.,&Brenguier F..(2020).Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano.Geophysical Research Letters,47(3). |
MLA | Ren C.X.,et al."Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano".Geophysical Research Letters 47.3(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。