Climate Change Data Portal
DOI | 10.1029/2020GL087140 |
A Machine-Learning Approach to Derive Long-Term Trends of Thermospheric Density | |
Weng L.; Lei J.; Zhong J.; Dou X.; Fang H. | |
发表日期 | 2020 |
ISSN | 0094-8276 |
卷号 | 47期号:6 |
英文摘要 | In this study, we revisit the long-term trend of thermospheric density by using a Machine-Learning approach. Our Artificial Neural Network Model (ANNM) can better capture the variations in the satellite drag-derived densities than earlier empirical models, especially during extremely solar minimum period of 2007–2009. The long-term trends from ANNM are similar when density data during either 1967–2005 or 1967–2013 intervals are used in the calculation. In addition, our trend estimates relative to the ANNM are −1.5% to −2.0% per decade from 250 to 575 km without obvious solar activity dependence. The Machine-Learning approach provides a good way to give stable long-term trend estimates of thermospheric density. ©2020. American Geophysical Union. All Rights Reserved. |
英文关键词 | Neural networks; Solar energy; Solar radiation; Artificial neural network methods; Artificial neural network modeling; Empirical model; Long-term trend; Machine learning approaches; Satellite drag; Solar activity; Thermospheric density; Machine learning; artificial neural network; empirical analysis; long-term change; machine learning; methodology; satellite altimetry; solar activity; thermosphere; trend analysis |
语种 | 英语 |
来源期刊 | Geophysical Research Letters |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/170568 |
作者单位 | CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China; College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China; Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei, China; Planetary Environmental and Astrobiological Research Laboratory, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China |
推荐引用方式 GB/T 7714 | Weng L.,Lei J.,Zhong J.,et al. A Machine-Learning Approach to Derive Long-Term Trends of Thermospheric Density[J],2020,47(6). |
APA | Weng L.,Lei J.,Zhong J.,Dou X.,&Fang H..(2020).A Machine-Learning Approach to Derive Long-Term Trends of Thermospheric Density.Geophysical Research Letters,47(6). |
MLA | Weng L.,et al."A Machine-Learning Approach to Derive Long-Term Trends of Thermospheric Density".Geophysical Research Letters 47.6(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Weng L.]的文章 |
[Lei J.]的文章 |
[Zhong J.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Weng L.]的文章 |
[Lei J.]的文章 |
[Zhong J.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Weng L.]的文章 |
[Lei J.]的文章 |
[Zhong J.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。