CCPortal
DOI10.1029/2019GL086615
Predicting Imminence of Analog Megathrust Earthquakes With Machine Learning: Implications for Monitoring Subduction Zones
Corbi F.; Bedford J.; Sandri L.; Funiciello F.; Gualandi A.; Rosenau M.
发表日期2020
ISSN 0094-8276
卷号47期号:7
英文摘要Subduction zones are monitored using space geodesy with increasing resolution, with the aim of better capturing the deformation accompanying the seismic cycle. Here, we investigate data characteristics that maximize the performance of a machine learning binary classifier predicting slip-event imminence. We overcome the scarcity of recorded instances from real subduction zones using data from a seismotectonic analog model monitored with a spatially dense, continuously recording onshore geodetic network. We show that a 70–85 km-wide coastal swath recording interseismic deformation gives the most important information on slip imminence. Prediction performances are mainly influenced by the alarm duration (amount of time that we consider an event as imminent), with density of stations and record length playing a secondary role. The techniques developed in this study are most likely applicable in regions of slow earthquakes, where stick-slip-like failures occur at time intervals of months to years. ©2020. The Authors.
英文关键词Deformation; Earthquakes; Forecasting; Geodesy; Slip forming; Stick-slip; Binary classifiers; Data characteristics; Geodetic networks; Interseismic deformations; Megathrust earthquakes; Prediction performance; Seismotectonics; Subduction zones; Machine learning
语种英语
来源期刊Geophysical Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/170474
作者单位Department of Earth Sciences, Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany; Dip. Scienze, Laboratory of Experimental Tectonics, Università “Roma TRE”, Rome, Italy; Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam, Germany; Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy; Department of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
推荐引用方式
GB/T 7714
Corbi F.,Bedford J.,Sandri L.,et al. Predicting Imminence of Analog Megathrust Earthquakes With Machine Learning: Implications for Monitoring Subduction Zones[J],2020,47(7).
APA Corbi F.,Bedford J.,Sandri L.,Funiciello F.,Gualandi A.,&Rosenau M..(2020).Predicting Imminence of Analog Megathrust Earthquakes With Machine Learning: Implications for Monitoring Subduction Zones.Geophysical Research Letters,47(7).
MLA Corbi F.,et al."Predicting Imminence of Analog Megathrust Earthquakes With Machine Learning: Implications for Monitoring Subduction Zones".Geophysical Research Letters 47.7(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Corbi F.]的文章
[Bedford J.]的文章
[Sandri L.]的文章
百度学术
百度学术中相似的文章
[Corbi F.]的文章
[Bedford J.]的文章
[Sandri L.]的文章
必应学术
必应学术中相似的文章
[Corbi F.]的文章
[Bedford J.]的文章
[Sandri L.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。