CCPortal
DOI10.1029/2020GL087776
A Machine Learning-Based Global Atmospheric Forecast Model
Arcomano T.; Szunyogh I.; Pathak J.; Wikner A.; Hunt B.R.; Ott E.
发表日期2020
ISSN 0094-8276
卷号47期号:9
英文摘要The paper investigates the applicability of machine learning (ML) to weather prediction by building a reservoir computing-based, low-resolution, global prediction model. The model is designed to take advantage of the massively parallel architecture of a modern supercomputer. The forecast performance of the model is assessed by comparing it to that of daily climatology, persistence, and a numerical (physics-based) model of identical prognostic state variables and resolution. Hourly resolution 20-day forecasts with the model predict realistic values of the atmospheric state variables at all forecast times for the entire globe. The ML model outperforms both climatology and persistence for the first three forecast days in the midlatitudes, but not in the tropics. Compared to the numerical model, the ML model performs best for the state variables most affected by parameterized processes in the numerical model. ©2020. American Geophysical Union. All Rights Reserved.
英文关键词Climatology; Machine learning; Numerical models; Parallel architectures; Supercomputers; FORECAST model; Forecast performance; Global predictions; Low resolution; Physics-based; Reservoir Computing; State variables; Weather prediction; Weather forecasting; atmospheric dynamics; climate modeling; computer; global climate; global perspective; machine learning; persistence; weather forecasting
语种英语
来源期刊Geophysical Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/170386
作者单位Department of Atmospheric Sciences, Texas A&M University, College Station, TX, United States; Department of Physics, University of Maryland, College Park, MD, United States; Department of Mathematics, University of Maryland, College Park, MD, United States; Department of Physics and Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
推荐引用方式
GB/T 7714
Arcomano T.,Szunyogh I.,Pathak J.,et al. A Machine Learning-Based Global Atmospheric Forecast Model[J],2020,47(9).
APA Arcomano T.,Szunyogh I.,Pathak J.,Wikner A.,Hunt B.R.,&Ott E..(2020).A Machine Learning-Based Global Atmospheric Forecast Model.Geophysical Research Letters,47(9).
MLA Arcomano T.,et al."A Machine Learning-Based Global Atmospheric Forecast Model".Geophysical Research Letters 47.9(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Arcomano T.]的文章
[Szunyogh I.]的文章
[Pathak J.]的文章
百度学术
百度学术中相似的文章
[Arcomano T.]的文章
[Szunyogh I.]的文章
[Pathak J.]的文章
必应学术
必应学术中相似的文章
[Arcomano T.]的文章
[Szunyogh I.]的文章
[Pathak J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。