Climate Change Data Portal
DOI | 10.1029/2020GL088376 |
Data-Driven Equation Discovery of Ocean Mesoscale Closures | |
Zanna L.; Bolton T. | |
发表日期 | 2020 |
ISSN | 0094-8276 |
卷号 | 47期号:17 |
英文摘要 | The resolution of climate models is limited by computational cost. Therefore, we must rely on parameterizations to represent processes occurring below the scale resolved by the models. Here, we focus on parameterizations of ocean mesoscale eddies and employ machine learning (ML), namely, relevance vector machines (RVMs) and convolutional neural networks (CNNs), to derive computationally efficient parameterizations from data, which are interpretable and/or encapsulate physics. In particular, we demonstrate the usefulness of the RVM algorithm to reveal closed-form equations for eddy parameterizations with embedded conservation laws. When implemented in an idealized ocean model, all parameterizations improve the statistics of the coarse-resolution simulation. The CNN is more stable than the RVM such that its skill in reproducing the high-resolution simulation is higher than the other schemes; however, the RVM scheme is interpretable. This work shows the potential for new physics-aware interpretable ML turbulence parameterizations for use in ocean climate models. ©2020. American Geophysical Union. All Rights Reserved. |
英文关键词 | Convolutional neural networks; Oceanography; Parameterization; Closed-form equations; Computational costs; Computationally efficient; Conservation law; Equation discovery; High resolution simulations; Ocean climate models; Relevance Vector Machine; Climate models; algorithm; artificial neural network; climate modeling; eddy covariance; machine learning; parameterization; support vector machine; turbulence |
语种 | 英语 |
来源期刊 | Geophysical Research Letters
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/169788 |
作者单位 | Courant Institute of Mathematical Sciences, New York University, New York, NY, United States; Department of Physics, University of Oxford, Oxford, United Kingdom |
推荐引用方式 GB/T 7714 | Zanna L.,Bolton T.. Data-Driven Equation Discovery of Ocean Mesoscale Closures[J],2020,47(17). |
APA | Zanna L.,&Bolton T..(2020).Data-Driven Equation Discovery of Ocean Mesoscale Closures.Geophysical Research Letters,47(17). |
MLA | Zanna L.,et al."Data-Driven Equation Discovery of Ocean Mesoscale Closures".Geophysical Research Letters 47.17(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zanna L.]的文章 |
[Bolton T.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zanna L.]的文章 |
[Bolton T.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zanna L.]的文章 |
[Bolton T.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。