CCPortal
DOI10.1029/2020GL089102
Applying Satellite Observations of Tropical Cyclone Internal Structures to Rapid Intensification Forecast With Machine Learning
Su H.; Wu L.; Jiang J.H.; Pai R.; Liu A.; Zhai A.J.; Tavallali P.; DeMaria M.
发表日期2020
ISSN 0094-8276
卷号47期号:17
英文摘要Tropical cyclone (TC) intensity change is controlled by both environmental conditions and internal storm processes. We show that TC 24-hr subsequent intensity change (DV24) is linearly correlated with the departures in satellite observations of inner-core precipitation, ice water content, and outflow temperature from respective threshold values corresponding to neutral TCs of nearly constant intensity. The threshold values vary linearly with TC intensity. Using machine learning with the inner-core precipitation and the predictors currently employed at the National Hurricane Center (NHC) for probabilistic rapid intensification (RI) forecast guidance, our model outperforms the NHC operational RI consensus in terms of the Peirce Skill Score for RI in the Atlantic basin during 2009–2014 by 37%, 12%, and 138% for DV24 ≥ 25, 30, and 35 kt, respectively. Our probability of detection is 40%, 60%, and 200% higher than the operational RI consensus, while the false alarm ratio is only 4%, 7%, and 6% higher. ©2020. The Authors.
英文关键词Machine learning; Storms; Tropics; Environmental conditions; False alarm ratio; Forecast guidance; Ice water content; Internal structure; Probability of detection; Rapid intensification; Satellite observations; Hurricanes; forecasting method; ice flow; machine learning; outflow; probability; satellite altimetry; storm track; tropical cyclone; Atlantic Ocean
语种英语
来源期刊Geophysical Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/169786
作者单位Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States; IBM Global Business Services, Armonk, NY, United States; RMDS Lab, Pasadena, CA, United States; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, United States; National Hurricane Center, Miami, FL, United States
推荐引用方式
GB/T 7714
Su H.,Wu L.,Jiang J.H.,et al. Applying Satellite Observations of Tropical Cyclone Internal Structures to Rapid Intensification Forecast With Machine Learning[J],2020,47(17).
APA Su H..,Wu L..,Jiang J.H..,Pai R..,Liu A..,...&DeMaria M..(2020).Applying Satellite Observations of Tropical Cyclone Internal Structures to Rapid Intensification Forecast With Machine Learning.Geophysical Research Letters,47(17).
MLA Su H.,et al."Applying Satellite Observations of Tropical Cyclone Internal Structures to Rapid Intensification Forecast With Machine Learning".Geophysical Research Letters 47.17(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Su H.]的文章
[Wu L.]的文章
[Jiang J.H.]的文章
百度学术
百度学术中相似的文章
[Su H.]的文章
[Wu L.]的文章
[Jiang J.H.]的文章
必应学术
必应学术中相似的文章
[Su H.]的文章
[Wu L.]的文章
[Jiang J.H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。