CCPortal
DOI10.1029/2020GL089436
Application of Deep Learning to Estimate Atmospheric Gravity Wave Parameters in Reanalysis Data Sets
Matsuoka D.; Watanabe S.; Sato K.; Kawazoe S.; Yu W.; Easterbrook S.
发表日期2020
ISSN 0094-8276
卷号47期号:19
英文摘要Gravity waves play an essential role in driving and maintaining global circulation. To understand their contribution in the atmosphere, the accurate reproduction of their distribution is important. Thus, a deep learning approach for the estimation of gravity wave momentum fluxes was proposed, and its performance at 100 hPa was tested using data from low-resolution zonal and meridional winds, temperature, and specific humidity at 300, 700, and 850 hPa in the Hokkaido region (Japan). To this end, a deep convolutional neural network was trained on 29-year reanalysis data sets (JRA-55 and DSJRA-55), and the final 5-year data were reserved for evaluation. The results showed that the fine-scale momentum flux distribution of the gravity waves could be estimated at a reasonable computational cost. Particularly, in winter, when gravity waves are stronger, the median root means square errors (RMSEs) of the maximum momentum flux and the characteristic zonal wavenumber were 0.06–0.13 mPa and 1.0 × 10−5, respectively. ©2020. The Authors.
英文关键词Atmospheric humidity; Cell proliferation; Convolutional neural networks; Deep neural networks; Gravity waves; Momentum; Atmospheric gravity waves; Computational costs; Global circulation; Gravity wave momentum; Learning approach; Meridional winds; Root-means-square errors; Specific humidity; Deep learning; artificial neural network; atmospheric circulation; data set; gravity wave; machine learning; meridional circulation; momentum transfer; parameter estimation; zonal wind; Hokkaido; Japan
语种英语
来源期刊Geophysical Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/169661
作者单位Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan; Japan Science and Technology Agency (JST), Kawaguchi, Japan; Department of Computer Science, University of Toronto, Toronto, ON, Canada; Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan; Department of Earth and Planetary Sciences, Hokkaido University, Sapporo, Japan
推荐引用方式
GB/T 7714
Matsuoka D.,Watanabe S.,Sato K.,et al. Application of Deep Learning to Estimate Atmospheric Gravity Wave Parameters in Reanalysis Data Sets[J],2020,47(19).
APA Matsuoka D.,Watanabe S.,Sato K.,Kawazoe S.,Yu W.,&Easterbrook S..(2020).Application of Deep Learning to Estimate Atmospheric Gravity Wave Parameters in Reanalysis Data Sets.Geophysical Research Letters,47(19).
MLA Matsuoka D.,et al."Application of Deep Learning to Estimate Atmospheric Gravity Wave Parameters in Reanalysis Data Sets".Geophysical Research Letters 47.19(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Matsuoka D.]的文章
[Watanabe S.]的文章
[Sato K.]的文章
百度学术
百度学术中相似的文章
[Matsuoka D.]的文章
[Watanabe S.]的文章
[Sato K.]的文章
必应学术
必应学术中相似的文章
[Matsuoka D.]的文章
[Watanabe S.]的文章
[Sato K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。