Climate Change Data Portal
DOI | 10.5194/acp-21-2267-2021 |
Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements | |
Brunamonti S.; Martucci G.; Romanens G.; Poltera Y.; Wienhold F.G.; Hervo M.; Haefele A.; Navas-Guzmán F. | |
发表日期 | 2021 |
ISSN | 1680-7316 |
起始页码 | 2267 |
结束页码 | 2285 |
卷号 | 21期号:3 |
英文摘要 | p Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (span classCombining double low line inline-formula i /i aer ) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in situ measurements of span classCombining double low line inline-formula i /i aer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014-2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to 455 and 940 nm, respectively, using the Angstrom exponent profiles retrieved from COBALD data. To account for the different receiver field-of-view (FOV) angles between the two lidars (0.01-0.02span classCombining double low line inline-formula g ) and COBALD (6span classCombining double low line inline-formula g ), we derive a custom-made correction using Mie-Theory scattering simulations. Our analysis shows that both lidar instruments achieve on average a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude. For medium-high-Aerosol-content measurements at altitudes below 3 km, the mean span classCombining double low line inline-formula standard deviation difference in span classCombining double low line inline-formula i /i aer calculated from all considered soundings is span classCombining double low line inline-formula-2 % span classCombining double low line inline-formula 37 % (span classCombining double low line inline-formula-0.018 span classCombining double low line inline-formula 0.237 Mmspan classCombining double low line inline-formula-1 srspan classCombining double low line inline-formula-1 at 455 nm) for span classCombining double low line inline-formula RALMO-COBALD and span classCombining double low line inline-formula + 5 % span classCombining double low line inline-formula 43 % (span classCombining double low line inline-formula + 0.009 span classCombining double low line inline-formula 0.185 Mmspan classCombining double low line inline-formula-1 srspan classCombining double low line inline-formula-1 at 940 mm) for span classCombining double low line inline-formula CHM15K-COBALD . Above 3 km altitude, absolute deviations generally decrease, while relative deviations increase due to the prevalence of air masses with low aerosol content. Uncertainties related to the FOV correction and spatial-and temporal-variability effects (associated with the balloon's drift with altitude and different integration times) contribute to the large standard deviations observed at low altitudes. The lack of information on the aerosol size distribution and the high atmospheric variability prevent an accurate quantification of these effects. Nevertheless, the excellent agreement observed in individual profiles, including fine and complex structures in the span classCombining double low line inline-formula i /i aer vertical distribution, shows that under optimal conditions, the discrepancies with the in situ measurements are typically comparable to the estimated statistical uncertainties in the remote-sensing measurements. Therefore, we conclude that span classCombining double low line inline-formula i /i aer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in situ measurements by COBALD sondes up to 6 km altitude./p. © 2018 Georg Thieme Verlag. All rights reserved. |
语种 | 英语 |
来源期刊 | Atmospheric Chemistry and Physics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/168756 |
作者单位 | Federal Office of Meteorology and Climatology (MeteoSwiss), Payerne, Switzerland; Swiss Federal Institute of Technology (ETH), Zurich, Switzerland; Andalusian Institute for Earth System Research, IISTA-CEAMA, University of Granada, Granada, 18006, Spain; Swiss Federal Laboratory of Material Sciences and Technology (Empa), Laboratory for Air Pollution/ Environmental Technology, Dubendorf, Switzerland |
推荐引用方式 GB/T 7714 | Brunamonti S.,Martucci G.,Romanens G.,et al. Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements[J],2021,21(3). |
APA | Brunamonti S..,Martucci G..,Romanens G..,Poltera Y..,Wienhold F.G..,...&Navas-Guzmán F..(2021).Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements.Atmospheric Chemistry and Physics,21(3). |
MLA | Brunamonti S.,et al."Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements".Atmospheric Chemistry and Physics 21.3(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。