CCPortal
DOI10.1039/c9ee01339c
A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis
Zhou B.; Kong X.; Vanka S.; Cheng S.; Pant N.; Chu S.; Ghamari P.; Wang Y.; Botton G.; Cuo H.; Mi Z.
发表日期2019
ISSN1754-5692
起始页码2842
结束页码2848
卷号12期号:9
英文摘要Photoelectrochemical conversion of CO2 with H2O into high-energy fuels and value-added chemicals such as HCOOH provides an appealing strategy for storing solar energy and closing the anthropogenic carbon cycle. However, rational design of catalytic architectures enabling high turnover frequencies (TOFs) for large-scale application has remained a grand challenge. Herein, we report a unique GaN:Sn nanoarchitecture integrated on planar silicon for aqueous photoelectrochemical reduction of CO2 to formic acid. Our density functional theory calculations reveal that the interface of GaN nanowires (NWs) and Sn nanoparticles (NPs), owing to their strong interaction, enables spontaneous CO2 activation, presenting an energetically favorable reaction path for selective HCOOH evolution. Together with the enhanced solar light harvesting, efficient charge carrier extraction, and high catalyst-utilization efficiency, a benchmark TOF of 107 min-1, the highest value ever reported for solar-driven conversion of CO2 to formic acid, is achieved at a high current density of 17.5 mA cm-2, high faradaic efficiency of 76.9%, and low potential of -0.53 V versus reversible hydrogen electrode under one-sun illumination. © 2019 The Royal Society of Chemistry.
语种英语
scopus关键词Carbon dioxide; Electrochemistry; Formic acid; Gallium nitride; III-V semiconductors; Silicon; Solar energy; Solar power generation; Catalyst utilization efficiency; Charge carrier extraction; High current densities; Large-scale applications; Photo-electrocatalysis; Photo-electrochemical conversions; Reversible hydrogen electrodes; Value-added chemicals; Density functional theory; carbon dioxide; catalysis; design method; electrode; electrokinesis; energy efficiency; formic acid; nanoparticle; silicon
来源期刊Energy and Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/162957
作者单位Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109, United States; Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada; Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8, Canada; Department of Materials Science and Engineering, Canadian Center for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
推荐引用方式
GB/T 7714
Zhou B.,Kong X.,Vanka S.,et al. A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis[J],2019,12(9).
APA Zhou B..,Kong X..,Vanka S..,Cheng S..,Pant N..,...&Mi Z..(2019).A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis.Energy and Environmental Science,12(9).
MLA Zhou B.,et al."A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis".Energy and Environmental Science 12.9(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou B.]的文章
[Kong X.]的文章
[Vanka S.]的文章
百度学术
百度学术中相似的文章
[Zhou B.]的文章
[Kong X.]的文章
[Vanka S.]的文章
必应学术
必应学术中相似的文章
[Zhou B.]的文章
[Kong X.]的文章
[Vanka S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。