Climate Change Data Portal
DOI | 10.1039/c9ee02543j |
Revealing electrolyte oxidation: Via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy | |
Zhang Y.; Katayama Y.; Tatara R.; Giordano L.; Yu Y.; Fraggedakis D.; Sun J.G.; Maglia F.; Jung R.; Bazant M.Z.; Shao-Horn Y. | |
发表日期 | 2020 |
ISSN | 1754-5692 |
起始页码 | 183 |
结束页码 | 199 |
卷号 | 13期号:1 |
英文摘要 | Understanding (electro-)chemical reactions at the electrode-electrolyte interface (EEI) is crucial to promote the cycle life of lithium-ion batteries. In this study, we developed an in situ Fourier-transform infrared spectroscopy (FT-IR) method, which provided unprecedented information on the oxidation of carbonate solvents via dehydrogenation on LiNixMnyCo1-x-yO2 (NMC). While ethylene carbonate (EC) was stable against oxidation on Pt up to 4.8 VLi, unique evidence for dehydrogenation of EC on LiNi0.8Co0.1Mn0.1O2 (NMC811) at voltages as low as 3.8 VLi was revealed by in situ FT-IR measurements, which was supported by density functional theory (DFT) results. Unique dehydrogenated species from EC were observed on NMC811 surface, including dehydrogenated EC anchored on oxides, vinylene carbonate (VC) and dehydrogenated oligomers which could diffuse away from the surface. Similar dehydrogenation on NMC811 was noted for EMC-based and LP57 (1 M LiPF6 in 3:7 EC/EMC) electrolytes. In contrast, no dehydrogenation was found for NMC111 or surface-modified NMC by coatings such as Al2O3. In addition, while the dehydrogenation of solvents was observed in 1 M electrolytes with different anions, they were not observed on NMC811 in the concentrated electrolyte (EC/EMC with 3.1 M LiPF6), indicating lithium coordination could suppress dehydrogenation. Dehydrogenation of carbonates on NMC811 accompanied with rapid growth of interfacial impedance with increasing voltage revealed by electrochemical impedance spectroscopy (EIS), while the electrode-electrolyte combinations without dehydrogenation did not show significant impedance growth. Therefore, minimizing carbonate dehydrogenation on the NMC surface by tuning electrode reactivity and electrolyte reactivity is critical to develop high-energy Li-ion batteries with long cycle life. © 2020 The Royal Society of Chemistry. |
语种 | 英语 |
scopus关键词 | Alumina; Aluminum oxide; Carbonation; Charging (batteries); Dehydrogenation; Density functional theory; Electrochemical electrodes; Electrochemical impedance spectroscopy; Electrolytes; Ethylene; Fourier transform infrared spectroscopy; Infrared imaging; Ions; Nickel oxide; Oxidation; Carbonate solvents; Dehydrogenated species; Electrode-electrolyte interfaces; Electrolyte oxidation; Ethylene carbonate; Fourier transform infra red (FTIR) spectroscopy; Interfacial impedance; Vinylene carbonates; Lithium-ion batteries; electrode; electrokinesis; electrolyte; energy storage; ethylene; infrared spectroscopy; lithium; nickel; oxidation |
来源期刊 | Energy and Environmental Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/162931 |
作者单位 | Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan; Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; BMW Group Petuelring 130, München, 80788, Germany; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States |
推荐引用方式 GB/T 7714 | Zhang Y.,Katayama Y.,Tatara R.,et al. Revealing electrolyte oxidation: Via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy[J],2020,13(1). |
APA | Zhang Y..,Katayama Y..,Tatara R..,Giordano L..,Yu Y..,...&Shao-Horn Y..(2020).Revealing electrolyte oxidation: Via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy.Energy and Environmental Science,13(1). |
MLA | Zhang Y.,et al."Revealing electrolyte oxidation: Via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy".Energy and Environmental Science 13.1(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。