Climate Change Data Portal
DOI | 10.1039/d0ee01569e |
4 v room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface | |
Asakura R.; Reber D.; Duchêne L.; Payandeh S.; Remhof A.; Hagemann H.; Battaglia C. | |
发表日期 | 2020 |
ISSN | 1754-5692 |
起始页码 | 5048 |
结束页码 | 5058 |
卷号 | 13期号:12 |
英文摘要 | Designing solid electrolytes for all-solid-state-batteries that can withstand the extreme electrochemical conditions in contact with an alkali metal anode and a high-voltage cathode is challenging, especially when the battery is cycled beyond 4 V. Here we demonstrate that a hydroborate solid electrolyte Na4(CB11H12)2(B12H12), built from two types of cage-like anions with different oxidative stability, can effectively passivate the interface to a 4 V-class cathode and prevent impedance growth during cycling. We show that [B12H12]2- anions decompose below 4.2 V vs. Na+/Na to form a passivating interphase layer, while [CB11H12]- anions remain intact, providing sufficient ionic conductivity across the layer. Our interface engineering strategy enables the first demonstration of a 4 V-class hydroborate-based all-solid-state battery combining a sodium metal anode and a cobalt-free Na3(VOPO4)2F cathode without any artificial protective coating. When cycled to 4.15 V vs. Na+/Na, the cells feature a discharge capacity of 104 mA h g-1 at C/10 and 99 mA h g-1 at C/5, and an excellent capacity and energy retention of 78% and 76%, respectively, after 800 cycles at C/5 at <0.2 MPa at room temperature. Increasing the pressure to 3.2 MPa enables a discharge capacity of 117 mA h g-1 at C/10 with a mass loading of 8.0 mg cm-2, corresponding to an areal capacity close to 1.0 mA h cm-2. The cell holds the highest average discharge cell voltage of 3.8 V and specific energy per cathode active material among all-solid-state sodium batteries reported so far, emphasizing the potential of hydroborates as electrolytes for a competitive all-solid-state battery technology. This journal is © The Royal Society of Chemistry. |
语种 | 英语 |
scopus关键词 | Anodes; Cathodes; High pressure effects; Interface states; Ions; Potentiometric sensors; Protective coatings; Sodium; Solid state devices; Solid-State Batteries; All-solid state batteries; Cathode active material; Discharge capacities; Electrochemical conditions; High voltage cathode; Interface engineering; Oxidative stability; Solid electrolyte interfaces; Solid electrolytes; detection method; electrode; electrolyte; equipment; temperature effect |
来源期刊 | Energy and Environmental Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/162369 |
作者单位 | Materials for Energy Conversion, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland; Département de Chimie-Physique, Université de Genève, Geneva 4, 1211, Switzerland; Institut des Matériaux, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland |
推荐引用方式 GB/T 7714 | Asakura R.,Reber D.,Duchêne L.,et al. 4 v room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface[J],2020,13(12). |
APA | Asakura R..,Reber D..,Duchêne L..,Payandeh S..,Remhof A..,...&Battaglia C..(2020).4 v room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface.Energy and Environmental Science,13(12). |
MLA | Asakura R.,et al."4 v room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface".Energy and Environmental Science 13.12(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。