CCPortal
DOI10.1016/j.atmosres.2018.10.020
Improving ECMWF-based 6-hours maximum rain using instability indices and neural networks
Manzato A.; Pucillo A.; Cicogna A.
发表日期2019
ISSN0169-8095
起始页码184
结束页码197
卷号217
英文摘要Friuli Venezia Giulia (FVG, NE Italy) is an area of maximum rainfall in the whole Alpine chain territory, reaching more than 3200 mm of mean annual rain in the Julian Prealps. According to recent climatological studies, the same area is also one of the European spot in recent lightning climatologies, meaning that convective rain plays an important role in the total rainfall. A network of 104 raingauges placed around the FVG territory is used to extract the absolute maximum rain accumulated every 6 hours in four subareas of FVG. In an attempt to improve the original ECMWF maximum rain, these data have been targeted to develop 32 statistical downscaling models, according to the period of the day, of the year and specific sub-area. ECMWF 6-hour rain forecasts available for all the gridpoints encompassed in the FVG territory and some derived variables (absolute values, anomalies, standardized values, plus mean, max and SD in time and/or space) have been used as predictors. With respect to a previous version of this work, here also the instability pseudo-indices (derived from the vertical profile with the maximum vertical resolution available in the ECMWF hybrid levels) are used as candidate predictors. Moreover, also non-linear methods, namely neural networks, are implemented, together with exhaustive multiregression models. Results show that the 32 models improve -on average- R2 of 12% on the validation sample and of 5% on the 2017 test sample, with respect to the ECMWF rain forecast, but the improvement is particularly notable during the convective season (18%). © 2018 Elsevier B.V.
英文关键词6-Hour rain forecast; ECMWF downscaling; Neural networks
语种英语
scopus关键词Forecasting; Neural networks; Convective rain; Down-scaling; Instability index; Multi-regression model; Non-linear methods; Statistical downscaling; Vertical profile; Vertical resolution; Rain; artificial neural network; climatology; downscaling; rainfall; raingauge; weather forecasting; Alps; Eastern Alps; Friuli-Venezia Giulia; Italy; Julian Alps
来源期刊Atmospheric Research
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/162161
作者单位OSMER – Osservatorio Meteorologico Regionale dell'ARPA Friuli Venezia Giulia, Via Natisone 43, Palmanova, UD I-33057, Italy
推荐引用方式
GB/T 7714
Manzato A.,Pucillo A.,Cicogna A.. Improving ECMWF-based 6-hours maximum rain using instability indices and neural networks[J],2019,217.
APA Manzato A.,Pucillo A.,&Cicogna A..(2019).Improving ECMWF-based 6-hours maximum rain using instability indices and neural networks.Atmospheric Research,217.
MLA Manzato A.,et al."Improving ECMWF-based 6-hours maximum rain using instability indices and neural networks".Atmospheric Research 217(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Manzato A.]的文章
[Pucillo A.]的文章
[Cicogna A.]的文章
百度学术
百度学术中相似的文章
[Manzato A.]的文章
[Pucillo A.]的文章
[Cicogna A.]的文章
必应学术
必应学术中相似的文章
[Manzato A.]的文章
[Pucillo A.]的文章
[Cicogna A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。