CCPortal
DOI10.1073/pnas.1922502117
The hemispheric contrast in cloud microphysical properties constrains aerosol forcing
McCoy I.L.; McCoy D.T.; Wood R.; Regayre L.; Watson-Parris D.; Grosvenor D.P.; Mulcahy J.P.; Hu Y.; Bender F.A.M.; Field P.R.; Carslaw K.S.; Gordon H.
发表日期2020
ISSN0027-8424
起始页码18998
结束页码19006
卷号117期号:32
英文摘要The change in planetary albedo due to aerosol-cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth s climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol-cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm-3 and 24 cm-3. By extension, the radiative forcing since 1850 from aerosol-cloud interactions is constrained to be -1.2 W m-2 to -0.6 W m-2. The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol-cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models. © 2020 National Academy of Sciences. All rights reserved.
语种英语
scopus关键词aerosol; Antarctica; article; climate change; concentration (parameter); global climate; greenhouse gas; Northern Hemisphere; precipitation; radiative forcing; sea; Southern Hemisphere; Southern Ocean; summer; uncertainty; concentration (parameter); radiative forcing; remote sensing; Southern Ocean
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/160845
作者单位McCoy, I.L., Atmospheric Sciences Department, University of Washington, Seattle, WA 98105, United States; McCoy, D.T., Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom; Wood, R., Atmospheric Sciences Department, University of Washington, Seattle, WA 98105, United States; Regayre, L., Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom; Watson-Parris, D., Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom; Grosvenor, D.P., Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom, National Center for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, United Kingdom; Mulcahy, J.P., Met Office, Exeter, EX1 3PB, United Kingdom; Hu, Y., Atmospheric Composition Branch, NASA Langley Research Center, Hampton, VA 23681, United States; Bender, F.A...
推荐引用方式
GB/T 7714
McCoy I.L.,McCoy D.T.,Wood R.,et al. The hemispheric contrast in cloud microphysical properties constrains aerosol forcing[J],2020,117(32).
APA McCoy I.L..,McCoy D.T..,Wood R..,Regayre L..,Watson-Parris D..,...&Gordon H..(2020).The hemispheric contrast in cloud microphysical properties constrains aerosol forcing.Proceedings of the National Academy of Sciences of the United States of America,117(32).
MLA McCoy I.L.,et al."The hemispheric contrast in cloud microphysical properties constrains aerosol forcing".Proceedings of the National Academy of Sciences of the United States of America 117.32(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[McCoy I.L.]的文章
[McCoy D.T.]的文章
[Wood R.]的文章
百度学术
百度学术中相似的文章
[McCoy I.L.]的文章
[McCoy D.T.]的文章
[Wood R.]的文章
必应学术
必应学术中相似的文章
[McCoy I.L.]的文章
[McCoy D.T.]的文章
[Wood R.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。