Climate Change Data Portal
DOI | 10.1073/pnas.2007248117 |
Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure | |
Li X.; Tan C.; Liu C.; Gao P.; p-gao@pku.edu.cn; Sun Y.; Chen P.; Li M.; Liao L.; Zhu R.; Wang J.; Zhao Y.; Wang L.; Xu Z.; Liu K.; Zhong X.; xlzhong@xtu.edu.cn; Wang J.; jw@zju.edu.cn; Bai X.; xdbai@iphy.ac.cn | |
发表日期 | 2020 |
ISSN | 0027-8424 |
起始页码 | 18954 |
结束页码 | 18961 |
卷号 | 117期号:32 |
英文摘要 | The ability to controllably manipulate complex topological polar configurations such as polar flux-closures via external stimuli may allow the construction of new electromechanical and nanoelectronic devices. Here, using atomically resolved in situ scanning transmission electron microscopy, we find that the polar fluxclosures in PbTiO3/SrTiO3 superlattice films are mobile and can be reversibly switched to ordinary single ferroelectric c or a domains under an applied electric field or stress. Specifically, the electric field initially drives movement of a flux-closure via domain wall motion and then breaks it to form intermediate a/c striped domains, whereas mechanical stress first squeezes the core of a flux-closure toward the interface and then form a/c domains with disappearance of the core. After removal of the external stimulus, the flux-closure structure spontaneously recovers. These observations can be precisely reproduced by phase field simulations, which also reveal the evolutions of the competing energies during phase transitions. Such reversible switching between flux-closures and ordinary ferroelectric states provides a foundation for potential electromechanical and nanoelectronic applications. © 2020 National Academy of Sciences. All rights reserved. |
语种 | 英语 |
scopus关键词 | Article; controlled study; electric field; electrical parameters; mechanical stress; phase transition; polar flux closure; priority journal; scanning transmission electron microscopy |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/160238 |
作者单位 | Li, X., Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China, International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Tan, C., Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China, School ofMaterials Science and Engineering, Xiangtan University, Xiangtan, 411105, China; Liu, C., Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China; Gao, P., p-gao@pku.edu.cn, International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China, Collaborative Innovation Centre of Quantum Matter, Beijing, 100871, China, Electron Microscopy Laboratory, Peking University, Beijing, 100871, China; Sun, Y., International Center for Quantum Materials, School of Physics, Peking Universit... |
推荐引用方式 GB/T 7714 | Li X.,Tan C.,Liu C.,et al. Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure[J],2020,117(32). |
APA | Li X..,Tan C..,Liu C..,Gao P..,p-gao@pku.edu.cn.,...&xdbai@iphy.ac.cn.(2020).Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure.Proceedings of the National Academy of Sciences of the United States of America,117(32). |
MLA | Li X.,et al."Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure".Proceedings of the National Academy of Sciences of the United States of America 117.32(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li X.]的文章 |
[Tan C.]的文章 |
[Liu C.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li X.]的文章 |
[Tan C.]的文章 |
[Liu C.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li X.]的文章 |
[Tan C.]的文章 |
[Liu C.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。