Climate Change Data Portal
DOI | 10.5194/hess-22-2343-2018 |
Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model | |
Du X.; Kumar Shrestha N.; Ficklin D.L.; Wang J. | |
发表日期 | 2018 |
ISSN | 1027-5606 |
起始页码 | 2343 |
结束页码 | 2357 |
卷号 | 22期号:4 |
英文摘要 | Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models. However, the NSE values were lower than those of the hydroclimatological model, indicating that more model verification needs to be done. The equilibrium temperature model uses existing SWAT meteorological data as input, can be calibrated using fewer parameters and less effort and has an overall better performance in stream temperature simulation. Thus, it can be used as an effective tool for predicting the changes in stream temperature regimes under varying hydrological and meteorological conditions. In addition, the impact of the stream temperature simulations on chemical reaction rates and concentrations was tested. The results indicate that the improved performance of the stream temperature simulation could significantly affect chemical reaction rates and the simulated concentrations, and the equilibrium temperature model could be a potential tool to model stream temperature in water quality simulations. © Author(s) 2018. |
语种 | 英语 |
scopus关键词 | Aquatic ecosystems; Biodiversity; Heat transfer coefficients; Meteorology; Phase interfaces; Reaction rates; Rivers; Stream flow; Sustainable development; Water quality; Wind; Efficiency coefficient; Environmental conditions; Equilibrium temperatures; Meteorological condition; Soil and water assessment tool; Soil and Water assessment tools; Stream temperature models; Water quality simulation; Atmospheric temperature; air temperature; air-water interaction; aquatic ecosystem; biodiversity; climate conditions; environmental conditions; heat transfer; soil and water assessment tool; solar radiation; streamflow; temperature effect; water quality; wind velocity; Alberta; Athabasca River; Canada; Tolt River; United States; Washington [United States] |
来源期刊 | Hydrology and Earth System Sciences
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/160053 |
作者单位 | Du, X., Athabasca River Basin Research Institute (ARBRI), Athabasca University, 1 University Drive, Athabasca, AB T9S 3A3, Canada; Kumar Shrestha, N., Athabasca River Basin Research Institute (ARBRI), Athabasca University, 1 University Drive, Athabasca, AB T9S 3A3, Canada; Ficklin, D.L., Department of Geography, Indiana University, Bloomington, IN, United States; Wang, J., Athabasca River Basin Research Institute (ARBRI), Athabasca University, 1 University Drive, Athabasca, AB T9S 3A3, Canada |
推荐引用方式 GB/T 7714 | Du X.,Kumar Shrestha N.,Ficklin D.L.,et al. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model[J],2018,22(4). |
APA | Du X.,Kumar Shrestha N.,Ficklin D.L.,&Wang J..(2018).Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model.Hydrology and Earth System Sciences,22(4). |
MLA | Du X.,et al."Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model".Hydrology and Earth System Sciences 22.4(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。