Climate Change Data Portal
DOI | 10.5194/hess-22-4097-2018 |
Testing an optimality-based model of rooting zone water storage capacity in temperate forests | |
Speich M.J.R.; Lischke H.; Zappa M. | |
发表日期 | 2018 |
ISSN | 1027-5606 |
起始页码 | 4097 |
结束页码 | 4124 |
卷号 | 22期号:7 |
英文摘要 | Rooting zone water storage capacity Sr is a crucial parameter for modeling hydrology, ecosystem gas exchange and vegetation dynamics. Despite its importance, this parameter is still poorly constrained and subject to high uncertainty. We tested the analytical, optimality-based model of effective rooting depth proposed by Guswa (2008, 2010) with regard to its applicability for parameterizing Sr in temperate forests. The model assumes that plants dimension their rooting systems to maximize net carbon gain. Results from this model were compared against values obtained by calibrating a local water balance model against latent heat flux and soil moisture observations from 15 eddy covariance sites. Then, the effect of optimality-based Sr estimates on the performance of local water balance predictions was assessed during model validation. The agreement between calibrated and optimality-based Sr varied greatly across climates and forest types. At a majority of cold and temperate sites, the Sr estimates were similar for both methods, and the water balance model performed equally well when parameterized with calibrated and with optimality-based Sr. At spruce-dominated sites, optimality-based Sr were much larger than calibrated values. However, this did not affect the performance of the water balance model. On the other hand, at the Mediterranean sites considered in this study, optimality-based Sr were consistently much smaller than calibrated values. The same was the case at pine-dominated sites on sandy soils. Accordingly, performance of the water balance model was much worse at these sites when optimality-based Sr were used. This rooting depth parameterization might be used in dynamic (eco)hydrological models under cold and temperate conditions, either to estimate Sr without calibration or as a model component. This could greatly increase the reliability of transient climate-impact assessment studies. On the other hand, the results from this study do not warrant the application of this model to Mediterranean climates or on very coarse soils. While the cause of these mismatches cannot be determined with certainty, it is possible that trees under these conditions follow rooting strategies that differ from the carbon budget optimization assumed by the model. © 2018 Author(s). |
语种 | 英语 |
scopus关键词 | Budget control; Carbon; Climatology; Forestry; Heat flux; Hydrology; Soil moisture; Climate impact assessment; Crucial parameters; Hydrological models; Mediterranean climates; Temperate forests; Vegetation dynamics; Water balance models; Water storage capacity; Climate models; calibration; carbon budget; deciduous forest; depth; eddy covariance; hydrological modeling; latent heat flux; model test; model validation; parameterization; performance assessment; rhizosphere; soil moisture; temperate forest; water budget; water storage; Picea |
来源期刊 | Hydrology and Earth System Sciences
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/159956 |
作者单位 | Speich, M.J.R., Dynamic Macroecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland, Hydrological Forecasts, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland, Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland, Biometry and Environmental Systems Analysis, University of Freiburg, Freiburg i. Br., 79106, Germany; Lischke, H., Dynamic Macroecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland; Zappa, M., Hydrological Forecasts, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland |
推荐引用方式 GB/T 7714 | Speich M.J.R.,Lischke H.,Zappa M.. Testing an optimality-based model of rooting zone water storage capacity in temperate forests[J],2018,22(7). |
APA | Speich M.J.R.,Lischke H.,&Zappa M..(2018).Testing an optimality-based model of rooting zone water storage capacity in temperate forests.Hydrology and Earth System Sciences,22(7). |
MLA | Speich M.J.R.,et al."Testing an optimality-based model of rooting zone water storage capacity in temperate forests".Hydrology and Earth System Sciences 22.7(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。