Climate Change Data Portal
DOI | 10.5194/hess-23-93-2019 |
Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall | |
Delobbe L.; Watlet A.; Wilfert S.; Van Camp M. | |
发表日期 | 2019 |
ISSN | 1027-5606 |
起始页码 | 93 |
结束页码 | 105 |
卷号 | 23期号:1 |
英文摘要 | The radar-based estimation of intense precipitation produced by convective storms is a challenging task and the verification through comparison with gauges is questionable due to the very high spatial variability of such types of precipitation. In this study, we explore the potential benefit of using a superconducting gravimeter as a new source of in situ observations for the evaluation of radar-based precipitation estimates. The superconducting gravimeter used in this study is installed in Membach (BE), 48 m underneath the surface, at 85 km distance from a C-band weather radar located in Wideumont (BE). The 15-year observation record 2003-2017 is available for both gravimeter and radar with 1 and 5 min time steps, respectively. Water mass increase at ground due to precipitation results in a decrease in underground measured gravity. The gravimeter integrates soil water in a radius of about 400 m around the instrument. This allows capture of rainfall at a larger spatial scale than traditional rain gauges. The precision of the gravimeter is a few tenths of nm s -2 , 1 nm s -2 corresponding to 2.6 mm of water. The comparison of reflectivity and gravity time series shows that short-duration intense rainfall events produce a rapid decrease in the underground measured gravity. A remarkable correspondence between radar and gravimeter time series is found. The precipitation amounts derived from gravity measurements and from radar observations are further compared for 505 rainfall events. A correlation coefficient of 0.58, a mean bias (radar-gravimeter)/gravimeter of 0.24 and a mean absolute difference (MAD) of 3.19 mm are obtained. A better agreement is reached when applying a hail correction by truncating reflectivity values to a given threshold. No bias, a correlation coefficient of 0.64 and a MAD of 2.3 mm are reached using a 48 dBZ threshold. The added value of underground gravity measurements as a verification dataset is discussed. The two main benefits are the spatial scale at which precipitation is captured and the interesting property that gravity measurements are directly influenced by water mass at ground no matter the type of precipitation: hail or rain. © Author(s) 2019.All Rights Reserved. |
语种 | 英语 |
scopus关键词 | Gravimeters; Gravitation; Meteorological radar; Oceanography; Rain; Rain gages; Reflection; Soil moisture; Time series; Correlation coefficient; In-situ observations; Intense precipitation; Mean absolute differences; Observation records; Reflectivity values; Spatial variability; Superconducting gravimeter; Radar measurement; data set; gravimetry; precipitation intensity; radar; raingauge; reflectivity; soil water; storm; time series; water mass; Belgium; Liege [Belgium]; Membach |
来源期刊 | Hydrology and Earth System Sciences
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/159799 |
作者单位 | Delobbe, L., Royal Meteorological Institute of Belgium, Brussels, 1180, Belgium; Watlet, A., Royal Observatory of Belgium, Brussels, 1180, Belgium; Wilfert, S., Institute of Geography, University of Augsburg, Augsburg, Germany; Van Camp, M., Royal Observatory of Belgium, Brussels, 1180, Belgium |
推荐引用方式 GB/T 7714 | Delobbe L.,Watlet A.,Wilfert S.,et al. Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall[J],2019,23(1). |
APA | Delobbe L.,Watlet A.,Wilfert S.,&Van Camp M..(2019).Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall.Hydrology and Earth System Sciences,23(1). |
MLA | Delobbe L.,et al."Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall".Hydrology and Earth System Sciences 23.1(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。