CCPortal
DOI10.5194/hess-24-2083-2020
Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain
Quéno L.; Karbou F.; Vionnet V.; Dombrowski-Etchevers I.
发表日期2020
ISSN1027-5606
起始页码2083
结束页码2104
卷号24期号:4
英文摘要

In mountainous terrain, the snowpack is strongly affected by incoming shortwave and longwave radiation. In this study, a thorough evaluation of the solar and longwave downwelling irradiance products (DSSF and DSLF) derived from the Meteosat Second Generation satellite was undertaken in the French Alps and the Pyrenees. The satellite-derived products were compared with forecast fields from the meteorological model AROME and with analysis fields from the SAFRAN system. A new satellite-derived product (DSLFnew) was developed by combining satellite observations and AROME forecasts. An evaluation against in situ measurements showed lower errors for DSSF than AROME and SAFRAN in terms of solar irradiances. For longwave irradiances, we were not able to select the best product due to contrasted results falling in the range of uncertainty of the sensors. Spatial comparisons of the different datasets over the Alpine and Pyrenean domains highlighted a better representation of the spatial variability of solar fluxes by DSSF and AROME than SAFRAN. We also showed that the altitudinal gradient of longwave irradiance is too strong for DSLFnew and too weak for SAFRAN. These datasets were then used as radiative forcing together with AROME near-surface forecasts to drive distributed snowpack simulations by the model Crocus in the French Alps and the Pyrenees. An evaluation against in situ snow depth measurements showed higher biases when using satellite-derived products, despite their quality. This effect is attributed to some error compensations in the atmospheric forcing and the snowpack model. However, satellite-derived irradiance products are judged beneficial for snowpack modelling in mountains, when the error compensations are solved.

. © 2020 Copernicus GmbH. All rights reserved.
语种英语
scopus关键词Atmospheric radiation; Errors; Forecasting; Landforms; Satellites; Atmospheric forcing; Downwelling irradiance; In-situ measurement; Meteorological modeling; Meteosat second generations; Mountainous terrain; Satellite observations; Spatial variability; Quality control; data set; error analysis; Meteosat; radiative forcing; shortwave radiation; simulation; snowpack; solar power; terrain; Alps; Pyrenees; Crocus
来源期刊Hydrology and Earth System Sciences
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/159425
作者单位Quéno, L., Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige, Grenoble, 38000, France, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland; Karbou, F., Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige, Grenoble, 38000, France; Vionnet, V., Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige, Grenoble, 38000, France, Environmental Numerical Research Prediction, Environment and Climate Change Canada, Dorval, QC, Canada; Dombrowski-Etchevers, I., CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
推荐引用方式
GB/T 7714
Quéno L.,Karbou F.,Vionnet V.,et al. Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain[J],2020,24(4).
APA Quéno L.,Karbou F.,Vionnet V.,&Dombrowski-Etchevers I..(2020).Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain.Hydrology and Earth System Sciences,24(4).
MLA Quéno L.,et al."Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain".Hydrology and Earth System Sciences 24.4(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Quéno L.]的文章
[Karbou F.]的文章
[Vionnet V.]的文章
百度学术
百度学术中相似的文章
[Quéno L.]的文章
[Karbou F.]的文章
[Vionnet V.]的文章
必应学术
必应学术中相似的文章
[Quéno L.]的文章
[Karbou F.]的文章
[Vionnet V.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。