Climate Change Data Portal
DOI | 10.5194/hess-24-2437-2020 |
Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous; semi-confined aquifer system | |
Maples S.R.; Foglia L.; Fogg G.E.; Maxwell R.M. | |
发表日期 | 2020 |
ISSN | 1027-5606 |
起始页码 | 2437 |
结束页码 | 2456 |
卷号 | 24期号:5 |
英文摘要 | An increasing reliance on groundwater resources has been observed worldwide during the past 50-70 years and has led to unsustainable groundwater abstraction in many regions, especially in semi-Arid and arid alluvial groundwater basins. Managed aquifer recharge (MAR) has been promoted to replenish overdrafted groundwater basins and augment surface water supply. However, MAR feasibility in alluvial groundwater basins is complicated by complex geologic architecture that typically includes laterally continuous, fine-Texture confining units that can impede both recharge rates and regional propagation of increases in the hydraulic head. A greater feasibility of MAR hinges on identifying locations where rapid, high-volume recharge that provides regional increases in pressure head are possible, but relatively little research has evaluated the factors that control MAR feasibility in alluvial groundwater basins. Here, we combine a transition probability Markov chain geostatistical model of the subsurface geologic heterogeneity of the eastern side of the northern Central Valley, California, with the three-dimensional, variably saturated water flow code ParFlow to explore the variability of MAR feasibility in this region. We use a combination of computationally efficient local-and global-sensitivity analyses to evaluate the relative importance of factors that contribute to MAR feasibility. A novel proxy parameter approach was used to describe the configuration and proportions of subsurface hydrofacies and the water table depth for sensitivity analyses, and results suggest that recharge potential is relatively more sensitive to the variability of this proxy parameter than to the variability of individual hydrofacies hydraulic properties. Results demonstrate that large variability of MAR feasibility is typical for alluvial aquifer systems and that outsized recharge rates are possible in select locations where interconnected, coarse-Texture hydrofacies occur. . © 2005 IEEE Computer Society. All rights reserved. |
语种 | 英语 |
scopus关键词 | Aquifers; Flow of water; Geologic models; Groundwater resources; Markov chains; Sensitivity analysis; Surface waters; Textures; Water supply; Alluvial aquifer systems; Computationally efficient; Confined aquifer system; Geostatistical modeling; Global sensitivity analysis; Groundwater abstraction; Managed aquifer recharges; Transition probabilities; Recharging (underground waters); aquifer; groundwater; groundwater abstraction; hydraulic head; hydrogeology; parameter estimation; recharge; sensitivity analysis; surface water; water flow; water table; Central Valley [California] |
来源期刊 | Hydrology and Earth System Sciences
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/159407 |
作者单位 | Maples, S.R., Hydrologic Sciences Graduate Group, University of California, Davis, One Shields Ave, Davis, CA 95616, United States; Foglia, L., Department of Land, Air, and Water Resources, University of California, Davis, One Shields Ave, Davis, CA 95616, United States; Fogg, G.E., Department of Land, Air, and Water Resources, University of California, Davis, One Shields Ave, Davis, CA 95616, United States; Maxwell, R.M., Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States |
推荐引用方式 GB/T 7714 | Maples S.R.,Foglia L.,Fogg G.E.,et al. Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous; semi-confined aquifer system[J],2020,24(5). |
APA | Maples S.R.,Foglia L.,Fogg G.E.,&Maxwell R.M..(2020).Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous; semi-confined aquifer system.Hydrology and Earth System Sciences,24(5). |
MLA | Maples S.R.,et al."Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous; semi-confined aquifer system".Hydrology and Earth System Sciences 24.5(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。