Climate Change Data Portal
DOI | 10.5194/hess-24-3189-2020 |
Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm | |
Monteil C.; Zaoui F.; Le Moine N.; Hendrickx F. | |
发表日期 | 2020 |
ISSN | 1027-5606 |
起始页码 | 3189 |
结束页码 | 3209 |
卷号 | 24期号:6 |
英文摘要 | Environmental modelling is complex, and models often require the calibration of several parameters that are not able to be directly evaluated from a physical quantity or field measurement. Multi-objective calibration has many advantages such as adding constraints in a poorly constrained problem or finding a compromise between different objectives by defining a set of optimal parameters. The caRamel optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers not just one but a family of parameter sets that are optimal with regard to a multi-objective target. The idea behind caRamel is to rely on stochastic rules while also allowing more "local" mechanisms, such as the extrapolation along vectors in the parameter space. The caRamel algorithm is a hybrid of the multi-objective evolutionary annealing simplex (MEAS) method and the non-dominated sorting genetic algorithm II ("-NSGA-II). It was initially developed for calibrating hydrological models but can be used for any environmental model. The caRamel algorithm is well adapted to complex modelling. The comparison with other optimizers in hydrological case studies (i.e. NSGA-II and MEAS) confirms the quality of the algorithm. An R package, caRamel, has been designed to easily implement this multi-objective algorithm optimizer in the R environment. © Author(s) 2020. |
语种 | 英语 |
scopus关键词 | Calibration; Genetic algorithms; Stochastic systems; Vector spaces; Automatic calibration; Environmental model; Environmental modelling; Hydrological models; Multi objective algorithm; Multi-objective calibration; Multi-objective evolutionary; Non-dominated sorting genetic algorithm - ii; Parameter estimation; automation; calibration; environmental modeling; genetic algorithm; optimization; parameterization; stochasticity |
来源期刊 | Hydrology and Earth System Sciences
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/159372 |
作者单位 | Monteil, C., EDF RandD LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, 78400, France; Zaoui, F., EDF RandD LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, 78400, France; Le Moine, N., UMR 7619 Metis (SU/CNRS/EPHE), Sorbonne Université, 4 Place Jussieu, Paris, 75005, France; Hendrickx, F., EDF RandD LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, 78400, France |
推荐引用方式 GB/T 7714 | Monteil C.,Zaoui F.,Le Moine N.,et al. Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm[J],2020,24(6). |
APA | Monteil C.,Zaoui F.,Le Moine N.,&Hendrickx F..(2020).Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm.Hydrology and Earth System Sciences,24(6). |
MLA | Monteil C.,et al."Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm".Hydrology and Earth System Sciences 24.6(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。