CCPortal
DOI10.5194/hess-24-3189-2020
Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm
Monteil C.; Zaoui F.; Le Moine N.; Hendrickx F.
发表日期2020
ISSN1027-5606
起始页码3189
结束页码3209
卷号24期号:6
英文摘要Environmental modelling is complex, and models often require the calibration of several parameters that are not able to be directly evaluated from a physical quantity or field measurement. Multi-objective calibration has many advantages such as adding constraints in a poorly constrained problem or finding a compromise between different objectives by defining a set of optimal parameters. The caRamel optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers not just one but a family of parameter sets that are optimal with regard to a multi-objective target. The idea behind caRamel is to rely on stochastic rules while also allowing more "local" mechanisms, such as the extrapolation along vectors in the parameter space. The caRamel algorithm is a hybrid of the multi-objective evolutionary annealing simplex (MEAS) method and the non-dominated sorting genetic algorithm II ("-NSGA-II). It was initially developed for calibrating hydrological models but can be used for any environmental model. The caRamel algorithm is well adapted to complex modelling. The comparison with other optimizers in hydrological case studies (i.e. NSGA-II and MEAS) confirms the quality of the algorithm. An R package, caRamel, has been designed to easily implement this multi-objective algorithm optimizer in the R environment. © Author(s) 2020.
语种英语
scopus关键词Calibration; Genetic algorithms; Stochastic systems; Vector spaces; Automatic calibration; Environmental model; Environmental modelling; Hydrological models; Multi objective algorithm; Multi-objective calibration; Multi-objective evolutionary; Non-dominated sorting genetic algorithm - ii; Parameter estimation; automation; calibration; environmental modeling; genetic algorithm; optimization; parameterization; stochasticity
来源期刊Hydrology and Earth System Sciences
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/159372
作者单位Monteil, C., EDF RandD LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, 78400, France; Zaoui, F., EDF RandD LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, 78400, France; Le Moine, N., UMR 7619 Metis (SU/CNRS/EPHE), Sorbonne Université, 4 Place Jussieu, Paris, 75005, France; Hendrickx, F., EDF RandD LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, 78400, France
推荐引用方式
GB/T 7714
Monteil C.,Zaoui F.,Le Moine N.,et al. Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm[J],2020,24(6).
APA Monteil C.,Zaoui F.,Le Moine N.,&Hendrickx F..(2020).Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm.Hydrology and Earth System Sciences,24(6).
MLA Monteil C.,et al."Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules - The caRamel algorithm".Hydrology and Earth System Sciences 24.6(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Monteil C.]的文章
[Zaoui F.]的文章
[Le Moine N.]的文章
百度学术
百度学术中相似的文章
[Monteil C.]的文章
[Zaoui F.]的文章
[Le Moine N.]的文章
必应学术
必应学术中相似的文章
[Monteil C.]的文章
[Zaoui F.]的文章
[Le Moine N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。