CCPortal
DOI10.5194/hess-24-3271-2020
Field observations of soil hydrological flow path evolution over 10 millennia
Hartmann A.; Semenova E.; Weiler M.; Blume T.
发表日期2020
ISSN1027-5606
起始页码3271
结束页码3288
卷号24期号:6
英文摘要Preferential flow strongly controls water flow and transport in soils. It is ubiquitous but difficult to characterize and predict. This study addresses the occurrence and the evolution of preferential flow during the evolution of landscapes and here specifically during the evolution of hillslopes. We targeted a chronosequence of glacial moraines in the Swiss Alps to investigate how water flow paths evolve along with the soil-forming processes. Dye tracer irrigation experiments with a Brilliant Blue FCF solution (4 g L-1) were conducted on four moraines of different ages (30, 160, 3000, and 10 000 years). At each moraine, three dye tracer experiments were conducted on plots of 1.5 m ×1.0 m. The three plots at each moraine were characterized by different vegetation complexities (low, medium, and high). Each plot was further divided into three equal subplots for the application of three different irrigation amounts (20, 40, and 60 mm) with an average irrigation intensity of 20 mm h-1. The day after the experiment five vertical soil sections were excavated, and the stained flow paths were photographed. Digital image analysis was used to derive average infiltration depths and flow path characteristics such as the volume and surface density of the dye patterns. Based on the volume density, the observed dye patterns were assigned to specific flow type categories. The results show a significant change in the type of preferential flow paths along the chronosequence. The flow types change from a rather homogeneous matrix flow in coarse material with high conductivities and a sparse vegetation cover at the youngest moraine to a heterogeneous infiltration pattern at the medium-age moraines. Heterogeneous matrix and finger flow are dominant at these intermediate age classes. At the oldest moraine only macropore flow via root channels was observed in deeper parts of the soil, in combination with a very high water storage capacity of the organic top layer and low hydraulic conductivity of the deeper soil. In general, we found an increase in water storage with increasing age of the moraines, based on our observations of the reduction in infiltration depth as well as laboratory measurements of porosity. Preferential flow is, however, not only caused by macropores, but especially for the medium-age moraine, it seems to be mainly initiated by soil surface characteristics (vegetation patches and microtopography). © 2020 Author(s).
语种英语
scopus关键词Groundwater flow; Hydraulics; Irrigation; Soils; Vegetation; Brilliant blue FCF; Digital image analysis; Irrigation amounts; Irrigation intensities; Laboratory measurements; Preferential flows; Soil forming process; Vegetation patches; Infiltration; chronosequence; field method; hillslope; infiltration; landscape evolution; moraine; observational method; path analysis; preferential flow; soil water; water flow
来源期刊Hydrology and Earth System Sciences
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/159366
作者单位Hartmann, A., Section Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany; Semenova, E., Chair of Hydrology, University of Freiburg, Freiburg, Germany; Weiler, M., Chair of Hydrology, University of Freiburg, Freiburg, Germany; Blume, T., Section Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany
推荐引用方式
GB/T 7714
Hartmann A.,Semenova E.,Weiler M.,et al. Field observations of soil hydrological flow path evolution over 10 millennia[J],2020,24(6).
APA Hartmann A.,Semenova E.,Weiler M.,&Blume T..(2020).Field observations of soil hydrological flow path evolution over 10 millennia.Hydrology and Earth System Sciences,24(6).
MLA Hartmann A.,et al."Field observations of soil hydrological flow path evolution over 10 millennia".Hydrology and Earth System Sciences 24.6(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hartmann A.]的文章
[Semenova E.]的文章
[Weiler M.]的文章
百度学术
百度学术中相似的文章
[Hartmann A.]的文章
[Semenova E.]的文章
[Weiler M.]的文章
必应学术
必应学术中相似的文章
[Hartmann A.]的文章
[Semenova E.]的文章
[Weiler M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。