Climate Change Data Portal
DOI | 10.1029/2019MS001783 |
An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables | |
Taylor M.A.; Guba O.; Steyer A.; Ullrich P.A.; Hall D.M.; Eldrid C. | |
发表日期 | 2020 |
ISSN | 19422466 |
卷号 | 12期号:1 |
英文摘要 | We derive a formulation of the nonhydrostatic equations in spherical geometry with a Lorenz staggered vertical discretization. The combination conserves a discrete energy in exact time integration when coupled with a mimetic horizontal discretization. The formulation is a version of Dubos and Tort (2014, https://doi.org/10.1175/MWR-D-14-00069.1) rewritten in terms of primitive variables. It is valid for terrain following mass or height coordinates and for both Eulerian or vertically Lagrangian discretizations. The discretization relies on an extension to Simmons and Burridge (1981, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2) vertical differencing, which we show obeys a discrete derivative product rule. This product rule allows us to simplify the treatment of the vertical transport terms. Energy conservation is obtained via a term-by-term balance in the kinetic, internal, and potential energy budgets, ensuring an energy-consistent discretization up to time truncation error with no spurious sources of energy. We demonstrate convergence with respect to time truncation error in a spectral element code with a horizontal explicit vertically implicit implicit-explicit time stepping algorithm. ©2019. The Authors. |
英文关键词 | dynamical core; energy conservation; hamiltonian; mimetic; nonhydrostatic |
语种 | 英语 |
scopus关键词 | Budget control; Energy conservation; Hamiltonians; Potential energy; Discrete derivatives; Dynamical core; mimetic; Non-hydrostatic; Non-hydrostatic equations; Primitive variables; Spherical geometries; Time stepping algorithms; HTTP; algorithm; energy conservation; geometry; potential energy |
来源期刊 | Journal of Advances in Modeling Earth Systems |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/156780 |
作者单位 | Computational Science, Sandia National Laboratories, Albuquerque, NM, United States; Department of Land, Air and Water Resources, University of California, Davis, CA, United States; NVIDIA, Santa Clara, CA, United States; Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France |
推荐引用方式 GB/T 7714 | Taylor M.A.,Guba O.,Steyer A.,et al. An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables[J],2020,12(1). |
APA | Taylor M.A.,Guba O.,Steyer A.,Ullrich P.A.,Hall D.M.,&Eldrid C..(2020).An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables.Journal of Advances in Modeling Earth Systems,12(1). |
MLA | Taylor M.A.,et al."An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables".Journal of Advances in Modeling Earth Systems 12.1(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。