Climate Change Data Portal
DOI | 10.1029/2020MS002106 |
What Controls the Water Vapor Isotopic Composition Near the Surface of Tropical Oceans? Results From an Analytical Model Constrained by Large-Eddy Simulations | |
Risi C.; Muller C.; Blossey P. | |
发表日期 | 2020 |
ISSN | 19422466 |
卷号 | 12期号:8 |
英文摘要 | The goal of this study is to understand the mechanisms controlling the isotopic composition of the water vapor near the surface of tropical oceans, at the scale of about a hundred kilometers and a month. In the tropics, it has long been observed that the isotopic compositions of rain and vapor near the surface are more depleted when the precipitation rate is high. This is called the “amount effect.” Previous studies, based on observations or models with parameterized convection, have highlighted the roles of deep convective and mesoscale downdrafts and rain evaporation. But the relative importance of these processes has never been quantified. We hypothesize that it can be quantified using an analytical model constrained by large-eddy simulations. Results from large-eddy simulations confirm that the classical amount effect can be simulated only if precipitation rate changes result from changes in the large-scale circulation. We find that the main process depleting the water vapor compared to the equilibrium with the ocean is the fact that updrafts stem from areas where the water vapor is more enriched. The main process responsible for the amount effect is the fact that when the large-scale ascent increases, isotopic vertical gradients are steeper, so that updrafts and downdrafts deplete the subcloud layer more efficiently. © 2020. The Authors. |
英文关键词 | convection; large-eddy simulation; water isotopes |
语种 | 英语 |
scopus关键词 | Analytical models; Isotopes; Rain; Tropics; Water vapor; Amount effects; Isotopic composition; Large-scale circulation; Main process; Parameterized; Precipitation rates; Tropical ocean; Vertical gradients; Large eddy simulation; atmospheric circulation; atmospheric convection; isotopic composition; large eddy simulation; model; precipitation (climatology); water vapor |
来源期刊 | Journal of Advances in Modeling Earth Systems |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/156684 |
作者单位 | Laboratoire de Meteorologie Dynamique, IPSL, CNRS, Ecole Normale Superieure, Sorbonne Universite, PSL Research University, Paris, France; Department of Atmospheric Sciences, University of Washington, Seattle, WA, United States |
推荐引用方式 GB/T 7714 | Risi C.,Muller C.,Blossey P.. What Controls the Water Vapor Isotopic Composition Near the Surface of Tropical Oceans? Results From an Analytical Model Constrained by Large-Eddy Simulations[J],2020,12(8). |
APA | Risi C.,Muller C.,&Blossey P..(2020).What Controls the Water Vapor Isotopic Composition Near the Surface of Tropical Oceans? Results From an Analytical Model Constrained by Large-Eddy Simulations.Journal of Advances in Modeling Earth Systems,12(8). |
MLA | Risi C.,et al."What Controls the Water Vapor Isotopic Composition Near the Surface of Tropical Oceans? Results From an Analytical Model Constrained by Large-Eddy Simulations".Journal of Advances in Modeling Earth Systems 12.8(2020). |
条目包含的文件 | ||||||
条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。