Climate Change Data Portal
DOI | 10.1029/2020MS002094 |
An Integrated Methodology to Study Riparian Vegetation Dynamics: From Field Data to Impact Modeling | |
Latella M.; Bertagni M.B.; Vezza P.; Camporeale C. | |
发表日期 | 2020 |
ISSN | 19422466 |
卷号 | 12期号:8 |
英文摘要 | Riparian environments are highly dynamic ecosystems that support biodiversity and numerous services and that are conditioned by anthropogenic activities and climate change. In this work, we propose an integrated methodology that combines different research approaches—field studies and numerical and analytical modeling—in order to calibrate an ecohydrological stochastic model for riparian vegetation. The model yields vegetation biomass statistics and requires hydrological, topographical, and biological data as input. The biological parameters, namely, the carrying capacity and the flood-related decay rate, are the target of the calibration as they are related to intrinsic features of vegetation and site-specific environmental conditions. The calibration is here performed for two bars located within the riparian zone of the Cinca River (Spain). According to our results, the flood-related decay rate has a spatial dependence that reflects the zonation of different plant species over the study site. The carrying capacity depends on the depth of the phreatic surface, and it is adequately described by a right-skewed curve. The calibrated model well reproduces the actual biogeography of the Cinca riparian zone. The overall percentage absolute difference between the real and the computed biomass amounts to 9.3% and 3.3% for the two bars. The model is further used to predict the future evolution of riparian vegetation in a climate-change scenario. The results show that the change of hydrological regime forecast by future climate projections may induce dramatic reduction of vegetation biomass and strongly modify the Cinca riparian biogeography. © 2020. The Authors. |
英文关键词 | flow-vegetation interactions; impact models; model calibration; riparian vegetation; stochastic processes |
语种 | 英语 |
scopus关键词 | Biodiversity; Biomass; Climate models; Decay (organic); Ecology; Floods; Stochastic models; Stochastic systems; Vegetation; Absolute difference; Anthropogenic activity; Biological parameter; Climate change scenarios; Future climate projections; Hydrological regime; Integrated methodology; Riparian environments; Climate change; biodiversity; biomass; carrying capacity; climate change; ecological impact; ecological modeling; ecosystem service; human activity; integrated approach; methodology; riparian vegetation; vegetation dynamics; Aragon; Cinca River; Huesca [Aragon]; Spain |
来源期刊 | Journal of Advances in Modeling Earth Systems
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/156677 |
作者单位 | Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy |
推荐引用方式 GB/T 7714 | Latella M.,Bertagni M.B.,Vezza P.,et al. An Integrated Methodology to Study Riparian Vegetation Dynamics: From Field Data to Impact Modeling[J],2020,12(8). |
APA | Latella M.,Bertagni M.B.,Vezza P.,&Camporeale C..(2020).An Integrated Methodology to Study Riparian Vegetation Dynamics: From Field Data to Impact Modeling.Journal of Advances in Modeling Earth Systems,12(8). |
MLA | Latella M.,et al."An Integrated Methodology to Study Riparian Vegetation Dynamics: From Field Data to Impact Modeling".Journal of Advances in Modeling Earth Systems 12.8(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。