CCPortal
DOI10.1029/2019MS001982
Improving Time Step Convergence in an Atmosphere Model With Simplified Physics: The Impacts of Closure Assumption and Process Coupling
Wan H.; Woodward C.S.; Zhang S.; Vogl C.J.; Stinis P.; Gardner D.J.; Rasch P.J.; Zeng X.; Larson V.E.; Singh B.
发表日期2020
ISSN19422466
卷号12期号:10
英文摘要Convergence testing is a common practice in the development of dynamical cores of atmospheric models but is not as often exercised for the parameterization of subgrid physics. An earlier study revealed that the stratiform cloud parameterizations in several predecessors of the Energy Exascale Earth System Model (E3SM) showed strong time step sensitivity and slower-than-expected convergence when the model's time step was systematically refined. In this work, a simplified atmosphere model is configured that consists of the spectral-element dynamical core of the E3SM atmosphere model coupled with a large-scale condensation parameterization based on commonly used assumptions. This simplified model also resembles E3SM and its predecessors in the numerical implementation of process coupling and shows poor time step convergence in short ensemble tests. We present a formal error analysis to reveal the expected time step convergence rate and the conditions for obtaining such convergence. Numerical experiments are conducted to investigate the root causes of convergence problems. We show that revisions in the process coupling and closure assumption help to improve convergence in short simulations using the simplified model; the same revisions applied to a full atmosphere model lead to significant changes in the simulated long-term climate. This work demonstrates that causes of convergence issues in atmospheric simulations can be understood by combining analyses from physical and mathematical perspectives. Addressing convergence issues can help to obtain a discrete model that is more consistent with the intended representation of the physical phenomena. © 2020. The Authors.
英文关键词atmospheric model; convergence; parameterization; time stepping
语种英语
scopus关键词Parameterization; Atmosphere modeling; Atmospheric simulations; Closure assumptions; Condensation parameterization; Convergence problems; Numerical experiments; Numerical implementation; Physical phenomena; Climate models; atmospheric modeling; climate change; cloud condensation nucleus; discrete element method; error analysis; long-term change; numerical method; parameterization; stratiform cloud
来源期刊Journal of Advances in Modeling Earth Systems
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/156620
作者单位Pacific Northwest National Laboratory, Richland, WA, United States; Lawrence Livermore National Laboratory, Livermore, CA, United States; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, United States; Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
推荐引用方式
GB/T 7714
Wan H.,Woodward C.S.,Zhang S.,et al. Improving Time Step Convergence in an Atmosphere Model With Simplified Physics: The Impacts of Closure Assumption and Process Coupling[J],2020,12(10).
APA Wan H..,Woodward C.S..,Zhang S..,Vogl C.J..,Stinis P..,...&Singh B..(2020).Improving Time Step Convergence in an Atmosphere Model With Simplified Physics: The Impacts of Closure Assumption and Process Coupling.Journal of Advances in Modeling Earth Systems,12(10).
MLA Wan H.,et al."Improving Time Step Convergence in an Atmosphere Model With Simplified Physics: The Impacts of Closure Assumption and Process Coupling".Journal of Advances in Modeling Earth Systems 12.10(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wan H.]的文章
[Woodward C.S.]的文章
[Zhang S.]的文章
百度学术
百度学术中相似的文章
[Wan H.]的文章
[Woodward C.S.]的文章
[Zhang S.]的文章
必应学术
必应学术中相似的文章
[Wan H.]的文章
[Woodward C.S.]的文章
[Zhang S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。