CCPortal
DOI10.1029/2019MS001902
Disentangling the Coupled Atmosphere-Ocean-Ice Interactions Driving Arctic Sea Ice Response to CO2 Increases
Garuba O.A.; Singh H.A.; Hunke E.; Rasch P.J.
发表日期2020
ISSN19422466
卷号12期号:11
英文摘要A novel decomposition of the ocean heat energy that contributes to sea ice melt and growth (ocean-ice and frazil heat) into components that are driven by surface heat flux and ocean circulation changes is used to isolate the evolving roles of the atmosphere and ocean in the Arctic sea ice loss from CO2 increases. A sea ice volume budget analysis is used to separate the impacts of the anomalous frazil/ocean-ice heat from those of atmosphere-ice heat on the evolving Arctic sea ice volume. The role of atmosphere-ocean coupling in augmenting or curtailing the atmosphere- and ocean-driven sea ice losses is further isolated by comparing the ice volume budget and the anomalous frazil/ocean-ice heat components in partially and fully coupled experiments. Atmosphere-ice heat fluxes drive most of Arctic sea ice loss in the first decade following CO2 increase by increasing the sea ice top face melt in summer, while ocean circulation changes drive the loss over the longer term through the anomalous increase of heat transport into the Arctic, which drive decreases in frazil ice growth and sea ice extent in winter. Atmosphere-ocean coupling in the subpolar Atlantic further supports a negative feedback that attenuates the ocean-driven sea ice losses over time; by accelerating the weakening of the Atlantic meridional overturning circulation, it causes a large cooling of the subpolar Atlantic and attenuation of the anomalous heat transport into the Arctic in winter, allowing for a seasonal Arctic sea ice in the fully coupled experiment, while the Arctic completely becomes ice free in the partially coupled experiment. ©2020. The Authors.
英文关键词air-sea interaction; Arctic; Atlantic meridional overturning circulation; atmosphere-ocean-ice interaction; ocean dynamics; polar climate
语种英语
scopus关键词Atmospheric thermodynamics; Budget control; Carbon dioxide; Heat flux; Heat transfer; Sea ice; Arctic sea ice; Atlantic meridional overturning circulations; Atmosphere-ocean coupling; Heat transport; Ice interactions; Ocean circulation; Sea ice extent; Surface heat fluxes; Oceanography; atmosphere-ocean coupling; carbon dioxide; heat flux; ice-ocean interaction; meridional circulation; sea ice; seasonal variation; Arctic Ocean
来源期刊Journal of Advances in Modeling Earth Systems
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/156591
作者单位Pacific Northwest National Laboratory, Richland, WA, United States; School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada; Los Alamos National Laboratory, US Department of Energy Office of Science, Los Alamos, NM, United States
推荐引用方式
GB/T 7714
Garuba O.A.,Singh H.A.,Hunke E.,et al. Disentangling the Coupled Atmosphere-Ocean-Ice Interactions Driving Arctic Sea Ice Response to CO2 Increases[J],2020,12(11).
APA Garuba O.A.,Singh H.A.,Hunke E.,&Rasch P.J..(2020).Disentangling the Coupled Atmosphere-Ocean-Ice Interactions Driving Arctic Sea Ice Response to CO2 Increases.Journal of Advances in Modeling Earth Systems,12(11).
MLA Garuba O.A.,et al."Disentangling the Coupled Atmosphere-Ocean-Ice Interactions Driving Arctic Sea Ice Response to CO2 Increases".Journal of Advances in Modeling Earth Systems 12.11(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Garuba O.A.]的文章
[Singh H.A.]的文章
[Hunke E.]的文章
百度学术
百度学术中相似的文章
[Garuba O.A.]的文章
[Singh H.A.]的文章
[Hunke E.]的文章
必应学术
必应学术中相似的文章
[Garuba O.A.]的文章
[Singh H.A.]的文章
[Hunke E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。