Climate Change Data Portal
DOI | 10.1029/2020MS002141 |
Inclusion of Building-Resolving Capabilities Into the FastEddy® GPU-LES Model Using an Immersed Body Force Method | |
Muñoz-Esparza D.; Sauer J.A.; Shin H.H.; Sharman R.; Kosović B.; Meech S.; García-Sánchez C.; Steiner M.; Knievel J.; Pinto J.; Swerdlin S. | |
发表日期 | 2020 |
ISSN | 19422466 |
卷号 | 12期号:11 |
英文摘要 | As a first step toward achieving full physics urban weather simulation capabilities within the resident-GPU large-eddy simulation (LES) FastEddy® model, we have implemented and verified/validated a method for explicit representation of building effects. Herein, we extend the immersed body force method (IBFM) from Chan and Leach (2007, https://doi.org/10.1175/2006JAMC1321.1) to (i) be scale independent and (ii) control building surface temperatures. Through a specific drag-like term in the momentum equations, the IBFM is able to enforce essentially zero velocities within the buildings, in turn resulting in a no-slip boundary condition at the building walls. In addition, we propose similar forcing terms in the energy and mass conservation equations that allow an accurate prescription of the building temperature. The extended IBFM is computationally efficient and has the potential to be coupled to building energy models. The IBFM exhibits excellent agreement with laboratory experiments of an array of staggered cubes at a grid spacing of (Formula presented.) mm, demonstrating the applicability of the method beyond the atmospheric scale. In addition, the IBFM is validated at atmospheric scale through simulations of downtown Oklahoma City ((Formula presented.) m) using data collected during the Joint Urban 2003 (JU03) field campaign. Our LES IBFM results for mean wind speed, turbulence kinetic energy, and SF6 transport and dispersion compare well to observations and produce turbulence spectra that are in good agreement with sonic anemometer data. Statistical performance metrics for the JU03 simulations are within the range of other LES models in the literature. ©2020. The Authors. |
语种 | 英语 |
scopus关键词 | Atmospheric thermodynamics; Buildings; Graphics processing unit; Historic preservation; Kinetic energy; Kinetics; Large eddy simulation; Stress intensity factors; Turbulence; Wind; Computationally efficient; Explicit representation; Laboratory experiments; Mass conservation equations; No-slip boundary conditions; Statistical performance; Transport and dispersions; Turbulence kinetic energy; Energy efficiency; anemometer; boundary condition; building; computer simulation; kinetic energy; model validation; performance assessment; turbulence; Oklahoma |
来源期刊 | Journal of Advances in Modeling Earth Systems
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/156590 |
作者单位 | National Center for Atmospheric Research, Boulder, CO, United States; Faculty of Architecture and the Build Environment, Delft University of Technology, Delft, Netherlands |
推荐引用方式 GB/T 7714 | Muñoz-Esparza D.,Sauer J.A.,Shin H.H.,et al. Inclusion of Building-Resolving Capabilities Into the FastEddy® GPU-LES Model Using an Immersed Body Force Method[J],2020,12(11). |
APA | Muñoz-Esparza D..,Sauer J.A..,Shin H.H..,Sharman R..,Kosović B..,...&Swerdlin S..(2020).Inclusion of Building-Resolving Capabilities Into the FastEddy® GPU-LES Model Using an Immersed Body Force Method.Journal of Advances in Modeling Earth Systems,12(11). |
MLA | Muñoz-Esparza D.,et al."Inclusion of Building-Resolving Capabilities Into the FastEddy® GPU-LES Model Using an Immersed Body Force Method".Journal of Advances in Modeling Earth Systems 12.11(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。