Climate Change Data Portal
DOI | 10.1016/j.foreco.2018.10.031 |
Density has more influence than drought on spruce budworm (Choristoneura fumiferana) performance under outbreak conditions | |
Moise E.R.D.; Lavigne M.B.; Johns R.C. | |
发表日期 | 2019 |
ISSN | 0378-1127 |
起始页码 | 170 |
结束页码 | 175 |
卷号 | 433 |
英文摘要 | Eruptive insect pests have significant impacts on the structure and function of forest ecosystems. Outbreaks of spruce budworm (Choristoneura fumiferana) (Clem.), for instance, occur approximately every 35–40 years, resulting in the loss of millions of hectares of spruce–fir forests in eastern North America. In addition to the density-dependent relationships that drive insect outbreaks, rising populations often coincide with drought events, which are expected to increase in both frequency and intensity in response to climate change. However, as populations approach the eruptive phase, consequences of intraspecific competition may outweigh the benefit of host water stress. The objective of our study was to quantify defoliation and insect performance responses to the interactive effects of drought and density of spruce budworm. To test for these interactions, we established a manipulative field experiment in a mature, balsam fir-dominated forest stand using a combination of single-tree rainout shelters and sleeve-caged insect larvae at four different densities: 0, 25, 50, or 100 individuals. Defoliation of 1-year old shoots, but not current-year shoots, significantly increased in response to higher insect densities. Density also had a significant, negative effect on budworm percent survival, although the total number of recovered adults remained highest in the high density treatment. Adult female body mass was significantly reduced in response to increased density, but only on droughted trees. Lastly, male wing length was significantly decreased in response to increased density. Overall, our results demonstrate that across a broad range of outbreak densities, rain exclusion had a minor impact. Accordingly, we anticipate that as insect pest populations approach epidemic levels, the influence of density on defoliation, insect survival, and body condition is likely to outweigh the impact of moderate drought stress. © 2018 |
英文关键词 | Climate change; Defoliation; Mass; Performance; Survival; Wing length |
语种 | 英语 |
scopus关键词 | Climate change; Drought; Ecosystems; Defoliation; Mass; Performance; Survival; Wing lengths; Forestry; climate change; coniferous forest; defoliation; density dependence; drought stress; forest ecosystem; moth; performance assessment; pest outbreak; survival; wing morphology; Defoliation; Drought; Ecosystems; Mass; Performance; Survival; North America; Abies; Abies balsamea; Choristoneura fumiferana; Hexapoda |
来源期刊 | Forest Ecology and Management |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/156293 |
作者单位 | Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada |
推荐引用方式 GB/T 7714 | Moise E.R.D.,Lavigne M.B.,Johns R.C.. Density has more influence than drought on spruce budworm (Choristoneura fumiferana) performance under outbreak conditions[J],2019,433. |
APA | Moise E.R.D.,Lavigne M.B.,&Johns R.C..(2019).Density has more influence than drought on spruce budworm (Choristoneura fumiferana) performance under outbreak conditions.Forest Ecology and Management,433. |
MLA | Moise E.R.D.,et al."Density has more influence than drought on spruce budworm (Choristoneura fumiferana) performance under outbreak conditions".Forest Ecology and Management 433(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。