Climate Change Data Portal
DOI | 10.1088/1748-9326/ab2ee4 |
Benchmark estimates for aboveground litterfall data derived from ecosystem models | |
Li S.; Yuan W.; Ciais P.; Viovy N.; Ito A.; Jia B.; Zhu D. | |
发表日期 | 2019 |
ISSN | 17489318 |
卷号 | 14期号:8 |
英文摘要 | Litter production is a fundamental ecosystem process, which plays an important role in regulating terrestrial carbon and nitrogen cycles. However, there are substantial differences in the litter production simulations among ecosystem models, and a global benchmarking evaluation to measure the performance of these models is still lacking. In this study, we generated a global dataset of aboveground litterfall production (i.e. cLitter), a benchmark as the defined reference to test model performance, by combining systematic measurements taken from a substantial number of surveys (1079 sites) with a machine learning technique (i.e. random forest, RF). Our study demonstrated that the RF model is an effective tool for upscaling local litterfall production observations to the global scale. On average, the model predicted 23.15 Pg C yr-1 of aboveground litterfall production. Our results revealed substantial differences in the aboveground litterfall production simulations among the five investigated ecosystem models. Compared to the reference data at the global scale, most of models could reproduce the spatial patterns of aboveground litterfall production, but the magnitude of simulations differed substantially from the reference data. Overall, ORCHIDEE-MICT performed the best among the five investigated ecosystem models. © 2019 The Author(s). Published by IOP Publishing Ltd. |
英文关键词 | aboveground litterfall production; ecosystem model; leaf area index; random forest |
语种 | 英语 |
scopus关键词 | Benchmarking; Decision trees; Ecosystems; Statistical tests; Carbon and nitrogen; Ecosystem model; Global benchmarking; Leaf Area Index; Litterfall production; Machine learning techniques; Production simulation; Random forests; Learning systems; aboveground production; benchmarking; ecosystem modeling; litterfall; machine learning; nitrogen cycle; upscaling |
来源期刊 | Environmental Research Letters
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/154455 |
作者单位 | School of Atmospheric Sciences, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, 519082, China; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA, CNRS UVSQ, Gif-sur-Yvette, 91191, France; National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China |
推荐引用方式 GB/T 7714 | Li S.,Yuan W.,Ciais P.,et al. Benchmark estimates for aboveground litterfall data derived from ecosystem models[J],2019,14(8). |
APA | Li S..,Yuan W..,Ciais P..,Viovy N..,Ito A..,...&Zhu D..(2019).Benchmark estimates for aboveground litterfall data derived from ecosystem models.Environmental Research Letters,14(8). |
MLA | Li S.,et al."Benchmark estimates for aboveground litterfall data derived from ecosystem models".Environmental Research Letters 14.8(2019). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li S.]的文章 |
[Yuan W.]的文章 |
[Ciais P.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li S.]的文章 |
[Yuan W.]的文章 |
[Ciais P.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li S.]的文章 |
[Yuan W.]的文章 |
[Ciais P.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。