CCPortal
DOI10.1088/1748-9326/ab2ee4
Benchmark estimates for aboveground litterfall data derived from ecosystem models
Li S.; Yuan W.; Ciais P.; Viovy N.; Ito A.; Jia B.; Zhu D.
发表日期2019
ISSN17489318
卷号14期号:8
英文摘要Litter production is a fundamental ecosystem process, which plays an important role in regulating terrestrial carbon and nitrogen cycles. However, there are substantial differences in the litter production simulations among ecosystem models, and a global benchmarking evaluation to measure the performance of these models is still lacking. In this study, we generated a global dataset of aboveground litterfall production (i.e. cLitter), a benchmark as the defined reference to test model performance, by combining systematic measurements taken from a substantial number of surveys (1079 sites) with a machine learning technique (i.e. random forest, RF). Our study demonstrated that the RF model is an effective tool for upscaling local litterfall production observations to the global scale. On average, the model predicted 23.15 Pg C yr-1 of aboveground litterfall production. Our results revealed substantial differences in the aboveground litterfall production simulations among the five investigated ecosystem models. Compared to the reference data at the global scale, most of models could reproduce the spatial patterns of aboveground litterfall production, but the magnitude of simulations differed substantially from the reference data. Overall, ORCHIDEE-MICT performed the best among the five investigated ecosystem models. © 2019 The Author(s). Published by IOP Publishing Ltd.
英文关键词aboveground litterfall production; ecosystem model; leaf area index; random forest
语种英语
scopus关键词Benchmarking; Decision trees; Ecosystems; Statistical tests; Carbon and nitrogen; Ecosystem model; Global benchmarking; Leaf Area Index; Litterfall production; Machine learning techniques; Production simulation; Random forests; Learning systems; aboveground production; benchmarking; ecosystem modeling; litterfall; machine learning; nitrogen cycle; upscaling
来源期刊Environmental Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/154455
作者单位School of Atmospheric Sciences, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, 519082, China; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA, CNRS UVSQ, Gif-sur-Yvette, 91191, France; National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
推荐引用方式
GB/T 7714
Li S.,Yuan W.,Ciais P.,et al. Benchmark estimates for aboveground litterfall data derived from ecosystem models[J],2019,14(8).
APA Li S..,Yuan W..,Ciais P..,Viovy N..,Ito A..,...&Zhu D..(2019).Benchmark estimates for aboveground litterfall data derived from ecosystem models.Environmental Research Letters,14(8).
MLA Li S.,et al."Benchmark estimates for aboveground litterfall data derived from ecosystem models".Environmental Research Letters 14.8(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li S.]的文章
[Yuan W.]的文章
[Ciais P.]的文章
百度学术
百度学术中相似的文章
[Li S.]的文章
[Yuan W.]的文章
[Ciais P.]的文章
必应学术
必应学术中相似的文章
[Li S.]的文章
[Yuan W.]的文章
[Ciais P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。