Climate Change Data Portal
DOI | 10.1088/1748-9326/ab5199 |
Effect on the Earth system of realizing a 1.5 °c warming climate target after overshooting to the 2 °c level | |
Tachiiri K.; Silva Herran D.; Su X.; Kawamiya M. | |
发表日期 | 2019 |
ISSN | 17489318 |
卷号 | 14期号:12 |
英文摘要 | An Earth system model (ESM) was used to investigate the effect of reaching the target of 1.5 °C warming (relative to preindustrial levels) after overshooting to the 2 °C level with respect to selected global environment indicators. Two scenarios were compared that diverged after reaching the 2 °C level: One stayed at the 2 °C level, and the other cooled to the 1.5 °C level. Unlike the internationally coordinated model intercomparison projects, the scenarios were developed for a specific climatic model with emissions and land use scenarios consistent with socioeconomic projections from an integrated assessment model. The ESM output resulted in delayed realization of the 1.5 °C and 2 °C targets expected for 2100. The cumulative CO2 emissions for 2010-2100 (2300) were 358 (-53) GtCO2 in the 2 °C scenario and-337 (-936) GtCO2 in the 1.5 °C scenario. We examined the effect of overshooting on commonly used indicators related to surface air temperature, sea surface temperature and total ocean heat uptake. Global vegetation productivity at 2100 showed around a 5% increase in the 2 °C scenario without overshooting compared with the 1.5 °C scenario with overshooting, considered to be caused by more precipitation and stronger CO2 fertilization. A considerable difference was found between the two scenarios in terms of Arctic sea ice, whereas both scenarios indicated few corals would survive past the 21st century. The difference in steric sea level rise, reflecting total cumulative ocean heat uptake, between the two scenarios was <2 cm in 2100, and around 9 cm in 2300 in the Pacific Island region. A large overshoot may reduce the eventual difference between targets (i.e. 1.5 °C in contrast to 2 °C), particularly in terms of the indicators related to total ocean heat uptake, and to sensitive biological thresholds. © 2019 The Author(s). Published by IOP Publishing Ltd. |
英文关键词 | 1.5°ctarget; 2°ctarget; Earth system model; Integrated assessment model; Overshoot; Stabilization |
语种 | 英语 |
scopus关键词 | Carbon dioxide; Economics; Land use; Sea ice; Sea level; Stabilization; Surface waters; Biological thresholds; Earth system model; Integrated assessment models; Overshoot; Pre-industrial levels; Sea surface temperature (SST); Surface air temperatures; Vegetation productivity; Atmospheric temperature; air temperature; climate modeling; cooling; global warming; heat balance; sea ice; sea level change; socioeconomic status; Arctic; Anthozoa |
来源期刊 | Environmental Research Letters |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/154261 |
作者单位 | Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, 236-0001, Japan; Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa, 240-0115, Japan |
推荐引用方式 GB/T 7714 | Tachiiri K.,Silva Herran D.,Su X.,et al. Effect on the Earth system of realizing a 1.5 °c warming climate target after overshooting to the 2 °c level[J],2019,14(12). |
APA | Tachiiri K.,Silva Herran D.,Su X.,&Kawamiya M..(2019).Effect on the Earth system of realizing a 1.5 °c warming climate target after overshooting to the 2 °c level.Environmental Research Letters,14(12). |
MLA | Tachiiri K.,et al."Effect on the Earth system of realizing a 1.5 °c warming climate target after overshooting to the 2 °c level".Environmental Research Letters 14.12(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。