CCPortal
DOI10.1088/1748-9326/ab89d6
Estimation of global coastal sea level extremes using neural networks
Bruneau N.; Polton J.; Williams J.; Holt J.
发表日期2020
ISSN17489318
卷号15期号:7
英文摘要Accurately predicting total sea-level including tides and storm surges is key to protecting and managing our coastal environment. However, dynamically forecasting sea level extremes is computationally expensive. Here a novel alternative based on ensembles of artificial neural networks independently trained at over 600 tide gauges around the world, is used to predict the total sea-level based on tidal harmonics and atmospheric conditions at each site. The results show globally-consistent high skill of the neural networks (NNs) to capture the sea variability at gauges around the globe. While the main atmosphere-driven dynamics can be captured with multivariate linear regressions, atmospheric-driven intensification, tide-surge and tide-tide non-linearities in complex coastal environments are only predicted with the NNs. In addition, the non-linear NN approach provides a simple and consistent framework to assess the uncertainty through a probabilistic forecast. These new and cheap methods are relatively easy to setup and could be a valuable tool combined with more expensive dynamical model in order to improve local resilience. © 2020 The Author(s). Published by IOP Publishing Ltd.
英文关键词extremes; GESLA database; machine learning; sea water anomaly; storm surges
语种英语
scopus关键词Coastal zones; Forecasting; Sea level; Tide gages; Uncertainty analysis; Atmospheric conditions; Coastal environments; Coastal sea level; Dynamical model; Multivariate linear regressions; Neural networks (NNS); Probabilistic forecasts; Tidal harmonics; Neural networks; artificial neural network; coastal zone management; estimation method; extreme event; global change; sea level change; storm surge
来源期刊Environmental Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/153936
作者单位National Oceanography Centre, Joseph Proudman Building, Liverpool, L3 5DA, United Kingdom; Reask UK Ltd, 49 Greek Street, London, W1D 4EG, United Kingdom
推荐引用方式
GB/T 7714
Bruneau N.,Polton J.,Williams J.,et al. Estimation of global coastal sea level extremes using neural networks[J],2020,15(7).
APA Bruneau N.,Polton J.,Williams J.,&Holt J..(2020).Estimation of global coastal sea level extremes using neural networks.Environmental Research Letters,15(7).
MLA Bruneau N.,et al."Estimation of global coastal sea level extremes using neural networks".Environmental Research Letters 15.7(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bruneau N.]的文章
[Polton J.]的文章
[Williams J.]的文章
百度学术
百度学术中相似的文章
[Bruneau N.]的文章
[Polton J.]的文章
[Williams J.]的文章
必应学术
必应学术中相似的文章
[Bruneau N.]的文章
[Polton J.]的文章
[Williams J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。