Climate Change Data Portal
DOI | 10.1088/1748-9326/aba8c2 |
Topological data analysis reveals parameters with prognostic skill for extreme wildfire size | |
Bendick R.; Hoylman Z.H. | |
发表日期 | 2020 |
ISSN | 17489318 |
卷号 | 15期号:10 |
英文摘要 | A topological data analysis (TDA) of 200 000 U.S. wildfires larger than 5 acres indicates that events with the largest final burned areas are associated with systematically low fuel moistures, low precipitation, and high vapor pressure deficits in the 30 days prior to the fire start. These parameters are widely used in empirical fire forecasting tools, thus confirming that an unguided, machine learning (ML) analysis can reproduce known relationships. The simple, short time scale parameters identified can therefore provide quantifiable forecast skill for wildfires with extreme sizes. In contrast, longer aggregates of weather observations for the year prior to fire start, including specific humidity, normalized precipitation indices, average temperature, average precipitation, and vegetation indices are not strongly coupled to extreme fire size, thus afford limited or no enhanced forecast skill. The TDA demonstrates that fuel moistures and short-term weather parameters should optimize the training of ML algorithms for fire forecasting, whilst longer-term climate and ecological measures could be downweighted or omitted. The most useful short-term meteorological and fuels metrics are widely available with low latency for the conterminous U.S, and are not computationally intensive to calculate, suggesting that ML tools using these data streams may suffice to improve situational awareness for wildfire hazards in the U.S. © 2020 The Author(s). Published by IOP Publishing Ltd |
英文关键词 | Fire; Machine learning; Topological data analysis; Topology; United States |
语种 | 英语 |
scopus关键词 | Data streams; Fuels; Information analysis; Moisture; Topology; Weather forecasting; Ecological measures; Precipitation indices; Situational awareness; Specific humidity; Topological data analysis; Vapor pressure deficit; Weather observations; Weather parameters; Fires; data set; environmental factor; parameter estimation; vegetation type; wildfire; United States |
来源期刊 | Environmental Research Letters |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/153666 |
作者单位 | Department of Geosciences, University of Montana, Missoula, MT, United States; Montana Climate Office, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, United States |
推荐引用方式 GB/T 7714 | Bendick R.,Hoylman Z.H.. Topological data analysis reveals parameters with prognostic skill for extreme wildfire size[J],2020,15(10). |
APA | Bendick R.,&Hoylman Z.H..(2020).Topological data analysis reveals parameters with prognostic skill for extreme wildfire size.Environmental Research Letters,15(10). |
MLA | Bendick R.,et al."Topological data analysis reveals parameters with prognostic skill for extreme wildfire size".Environmental Research Letters 15.10(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Bendick R.]的文章 |
[Hoylman Z.H.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Bendick R.]的文章 |
[Hoylman Z.H.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Bendick R.]的文章 |
[Hoylman Z.H.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。