Climate Change Data Portal
DOI | 10.1088/1748-9326/abaad9 |
Alignment of tree phenology and climate seasonality influences the runoff response to forest cover loss | |
Knighton J.; Vijay V.; Palmer M. | |
发表日期 | 2020 |
ISSN | 17489318 |
卷号 | 15期号:10 |
英文摘要 | Trees shape the critical zone and modulate terrestrial water storage yet observed streamflow responses to forest cover change vary. Differences in catchment area, soil water storage, management practices, tree species, and climate are among the many explanations proposed for heterogeneous hydrologic responses. We addressed evidence for the hypothesis that mean annual temperature (MAT) and the phase shift between precipitation and enhanced vegetation index (EVI) peaks, θ, explain a significant amount of the variation in hydrologic response to forest cover loss. We selected 50 catchments with daily streamflow records spanning eight nations and seven climate regions. Categorical clustering of catchments was performed with MAT, θ, minimum EVI, catchment area, and percentage forest loss. Similar storm event runoff ratio responses to deforestation were best clustered by MAT and θ. High MAT tropical monsoonal catchments (Brazil, Myanmar, and Liberia) exhibited minimal evidence of increasing runoff ratios (increases observed in 9% of catchments). Low MAT subarctic, cold semi-arid, and humid continental catchments (US, Canada, and Estonia) showed consistent runoff increases around the time of snowmelt (94%). The deforestation runoff responses of temperate and subtropical catchments with Mediterranean, humid, and oceanic climates depended strongly on θ. We observe increased runoff following forest loss in a majority of catchments (90%) where precipitation peaks followed peak growing season (max EVI) (US). In contrast, where precipitation peaks preceded the growing season (South Africa and Australia) there was less evidence of increased runoff (25% of catchments). This research supports the strategic implementation of native forest conservation or restoration for simultaneously mitigating the effects of global climate change and regional or local surface runoff. © 2020 The Author(s). |
英文关键词 | Deforestation; Enhanced vegetation index (EVI); Forests; Hierarchical clustering; Runoff |
语种 | 英语 |
scopus关键词 | Catchments; Climate change; Conservation; Deforestation; Soil moisture; Stream flow; Tropics; Categorical clustering; Climate seasonality; Enhanced vegetation index; Global climate changes; Hydrologic response; Management practices; Mean annual temperatures; Terrestrial water storage; Runoff; climate effect; environmental degradation; global climate; growing season; peak flow; phenology; runoff; seasonality; snowmelt; streamflow; vegetation index; water storage; Africa; Australia; Brazil; Canada; Estonia; Liberia [West Africa]; Myanmar; South Africa |
来源期刊 | Environmental Research Letters
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/153602 |
作者单位 | National Socio-Environmental Synthesis Center, Annapolis, MD, United States |
推荐引用方式 GB/T 7714 | Knighton J.,Vijay V.,Palmer M.. Alignment of tree phenology and climate seasonality influences the runoff response to forest cover loss[J],2020,15(10). |
APA | Knighton J.,Vijay V.,&Palmer M..(2020).Alignment of tree phenology and climate seasonality influences the runoff response to forest cover loss.Environmental Research Letters,15(10). |
MLA | Knighton J.,et al."Alignment of tree phenology and climate seasonality influences the runoff response to forest cover loss".Environmental Research Letters 15.10(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。